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Abstract

Agency con�icts and asymmetric information are two possible expla-

nations that may rationalize the use of a step-up provision in the bond

indenture. Within a continuous-time framework with bankruptcy costs

and tax bene�ts, we analyze the optimal step-up bond design with respect

to both frictions. We �nd that (i) contrary to existing results, step-up

bonds are indeed able to mitigate the asset substitution problem, (ii) the

use of a step-up feature can be a credible signal to overcome asymmetric

information problems, and (iii) the optimal design as well as the conditions

for the optimal use of step-up bonds are considerably di�erent for the two

explanations. This outcome implies that, based on observable �rm and

bond characteristics, it is possible to discriminate between the two motives

underlying the use of step-up bonds.

JEL classi�cation: G32, G13, C70

Keywords: Asset substitution/risk incentive problem, signalling, tradeo� theory,
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1 Introduction

Corporate bonds might be issued with several di�erent provisions giving the bond-

holders some additional contractual rights. One of these rights is a so-called step-

up provision, which states that the initial coupon rate paid to the holders of the

bond will be increased once some prede�ned event takes place. Most frequently

this event is linked to the rating of the issuing �rm. If the rating is downgraded

to some contractually agreed upon level, the coupon rate will be increased by

a certain fraction. A sizeable volume of such rating-trigger step-up bonds have

been issued in particular by �rms from the telecom industry (see table 1 for a

representative example).

From an investors’ perspective, such a provision might be considered as nice to

have, since it promises a higher payment at a time when the credit risk of the

�rm increases. However, from the perspective of the issuing �rm, it is much less

clear why it might be a good idea to write such a contract because �rms have to

pay out more to its debt holders when less cash is available.

Empirical evidence for the consequences from a step-up feature is given by

Table 1: Deutsche Telekom’s Debt Issuance Program (excerpt)

ISIN Principal Coupon Maturity Date

XS0155788150 e 500,000,000 6.5%� Oct. 07, 2009

XS0155312829 GBP 500,000,000 7.125%� Sep. 26, 2012

XS0158739739 GBP 250,000,000 7.375%� Dec. 04, 2019

XS0161488498 e 500,000,000 7.5%� Jan. 24, 2033
� In the event of ratings change by Moody’s and S&P that causes the

ratings to be below of Baa1 by Moody’s and BBB+ by S&P the interest

rates on the notes will increase by 0.5% with e�ect from the �rst interest

payment date after this rating change occurs. (Reversible)

Houweling et al. (2004) and Lando and Mortensen (2004). The latter calibrate

a reduced-form model and compare step-up bonds to otherwise similar straight

�xed-coupon bonds. They �nd that step-up bonds increase the cost of capital

for the issuer so that step-up features should be avoided. The observation that

�rms still use step-up bonds seems to be even more puzzling, when we analyze

this aspect in a typical tradeo� model for the optimal capital structure in a
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world with tax bene�ts and bankruptcy costs (see e.g. Fischer et al. (1989) and

Leland (1994)). Within this modelling approach, the optimal debt volume that

maximizes the �rm value is positively related to the underlying state variable

(e.g. asset value or �rm’s instantaneous cash �ow). Hence, if the state variable

deteriorates and the �rm value declines, an increase of the debt obligation cannot

be optimal in order to add �rm value.

As it is frequently the case in �nancial economics, two notorious distortions of

the perfect markets assumption can be considered to explain this apparent puz-

zle: Agency con�icts and asymmetric information. Thus, we have (at least) two

intuitive candidate motives for the use of step-up provisions. The reasoning be-

hind the �rst distortion is that the step-up feature might be able to mitigate the

risk-shifting (asset substitution) incentive of manager-owners because a higher

risk increases the likelihood of a trigger event which raises the cost of capital.

Regarding the second distortion, the step-up provision might be able to act as a

credible device to signal some non-observable pricing-relevant �rm characteristics

to potential investors because �rms comparatively less pro�table might not want

to have a (costly) step-up feature.

Our paper is not the �rst to come up with these explanations for the use of step-

up bonds. Bhanot and Mello (2006) address the asset substitution problem, while

Manso et al. (2007) analyze the signalling hypothesis within the broader class of

performance-sensitive debt contracts. The broad conclusion emerging from exist-

ing literature is that step-up bonds cannot solve the risk-shifting problem,1 but

are able to credibly signal non-observable �rm characteristics.2

However, there are still some concerns that leave the question unsettled whether

step-up bonds can be an optimal �nancing instrument. First, Bhanot and Mello

(2006) do not consider the optimal step-up bond design as the result of maxi-

mizing ex ante �rm value with respect to all veri�able characteristics of such a

contract but they focus on an exogenously given debt value. Furthermore, they

only allow for a restricted risk-shifting strategy. Therefore, it is not surprising

that Bhanot and Mello (2006) come to the conclusion that rating-trigger step-up

bonds are typically not an attractive �nancing instrument. Second, in the signal-

1 Bhanot and Mello (2006) conclude that: “In general, an increase in the coupon level decreases

firm value and does not inhibit (and might even stimulate) asset substitution.” (Remark 6,

p. 91).
2 See Manso et al. (2007), Proposition 1, p. 21.
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ing game of Manso et al. (2007), �rms can choose between issuing performance-

sensitive debt or equity. They �nd that performance-sensitive debt can establish

a separating equilibrium in cases where this is not possible with a straight bond.

However, when debt is an important �nancing instrument for �rms (in order to

gain from tax bene�ts or to prevent the loss of control rights to new investors),

a signaling game, where the signal is given by the speci�c bond design and not

by the choice between debt and equity should be considered. Third, both con-

tributions neither aim at characterizing the optimal step-up bond design, nor

discuss conditions (with respect to the relevant parameters) under which the use

of step-up bonds might be optimal. These properties, however, are prerequisites

to infer testable implications.

In this paper, we want to close the gap from the concerns mentioned above.

Our primary goal is therefore twofold: On the one hand, we want to characterize

the optimal contract design. On the other hand, we want to characterize the

conditions under which an optimally designed contract can be value-maximizing.

These results will enable us to draw important conclusions on whether empirically

observed step-up bond contracts are either in line with the asset substitution ex-

planation or the asymmetric information explanation.

To summarize the goal of our contribution in more colloquial terms: Given, that

we can observe �rms having actually issued step-up bonds, we want to answer the

question. Was their reason for doing so either due to an agency con�ict in terms

of a risk-shifting problem, or was it due to an information asymmetry problem?

Hence, our focus is to �nd out which motive of a particular �rm is the reason for

the use of a speci�c �nancing arrangement, i.e. a given step-up bond. A related,

but di�erent problem would be to address the question, if step-up bonds are the

most suitable �nancing arrangement to mitigate a given friction such as the asset

substitution problem.3 Although being interesting, our focus is a di�erent one,

so we will deliberately leave aside this question in the subsequent analysis.

By solving a more general optimization problem, we �nd that in contrast to

Bhanot and Mello (2006), step-up bonds actually can mitigate the asset sub-

stitution problem. We are able to derive closed-form solutions for the optimal

step-up bond design and can characterize the conditions under which the use of

3 Many different contracts are conceivable, and e.g. Ju and Ou-Yang (2006) conjecture that

the asset substitution problem is effectively mitigated by the use of short-term debt.
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step-up bonds is optimal. With respect to asymmetric information, we show that

a separating equilibirum can always be established with a step-up bond. This

�nding extends the results by Manso et al. (2007) to a setting where �rms sig-

nal their type through the speci�c bond design, rather than through the choice

of debt and equity. Furthermore, we provide a characterization of the optimal

contract in this asymmetric information situation. Comparing both explanations

that may rationalize the use of step-up bonds, our major �nding is that the equi-

librium predictions from the two hypotheses regarding the optimal bond design

and the optimal conditions for the use of step-up bonds contrast sharply. In par-

ticular, the �rm characteristics and an observed bond design can unambiguously

explain whether a risk-shifting problem or a problem of asymmetric information

is the main reason for why a �rm uses step-up bonds.

The remainder of the paper is organized as follows: The next section presents

the general model framework. In section 3, we introduce agency con�icts in

the sense that manager-owners might follow a self-interested risk-shifting policy.

Section 4 considers the alternative explanation that the use of step-up bonds

is due to asymmetric information problems. Finally, in section 5, the di�erent

equilibrium predictions are discussed. Section 6 concludes. The main proofs are

contained in the appendix.

2 General Model Framework

We consider a �rm that owns some productive assets generating a continuous

cash-�ow x, whose dynamics are given by

dxt = µxt dt + σxt dZt, x0 > 0, (1)

where, as usual, dZt denotes the increment of a standard Wiener process and µ

and σ are constant parameters. For pricing purposes, we assume perfect capital

markets on which a risk-free asset with a constant instantaneous risk-free interest

rate r is continuously traded. Either all market participants are risk-neutral or

markets are arbitrage-free which implies that there exists a martingale measure

which allows for risk-neutral pricing. In the latter case µ denotes the risk-adjusted

drift term which is restricted to µ < r to guarantee �nite security values. The

present value of any arbitrary claim C(x) whose instantaneous payo� is an a�ne
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function a x + b on the state variable x, can then be written as the sum of the

present value of the �ow of payo�s to the claimholders from time t up to some

(stopping) time T and the present value of the claim at that time :

Ct = Et

[
∫ T

t

e�r(s�t)(a xs + b) ds + e�r�T L(xT )

]

.

To apply this general framework to the case of a �rm that considers to issue debt

with a rating-trigger step-up feature, note that such a contract will essentially

consist of three elements:

(i) The initial coupon rate c before a rating-trigger,

(ii) the step-up factor δ > 1 (i.e. after a step-up event has occurred, the new

coupon is δc), and

(iii) the trigger threshold xT < x0, i.e. once the cash �ow x hits the barrier

xT , the step-up takes place. We consider the case of an irreversible step-

up event. If subsequent to the step-up, x rises above xT , the coupon rate

remains at δc.

Thus, we can completely characterize the step-up bond contract by the triple

(c, δ, xT ). The equity holders are residual claimants in the sense that they imme-

diately receive the cash �ow that exceeds the coupon obligations. If the cash �ow

is insu�cient to cover the coupon payments, deep-pocketed equity holders have

to make up for the di�erence. This standard payout policy means that we rule

out that the �rm �nances the coupon payments by selling part of the assets and

that the dividend is set strategically.4 Furthermore, we assume that absolute pri-

ority of the debt claim is enforced so that renegotiations, which result in strategic

debt service, cannot take place.5 Since this rule implies that equity holders are

left with nothing in the case of default, we obtain the following representation

for the equity value, which we denote by S:

St = Et

[
∫ Tb

t

e�r(s�t)(1 − τ)(xs − c − 1fs�TT g(δ − 1)c) ds

]

(2)

= Et

[
∫ TT

t

e�r(s�t)(1 − τ)(xs − c) ds +

∫ Tb

TT

e�r(s�t)(1 − τ)(xs − δc) ds

]

,

4 See e.g. Morellec (2001) for a model where assets can be sold to finance debt service or

dividend payments. Strebulaev (2007) allows for asset sales if firms enter into financial

distress.
5 See e.g. Anderson and Sundaresan (1996), Mella-Barral (1999), Fan and Sundaresan (2000),

Koziol (2006) or Hackbarth et al. (2007) for the implications of strategic debt service.
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where 1f�g denotes the indicator function and τ stands for the tax rate on corpo-

rate income. For notational convenience, we abstract from further taxes on the

personal level. Tb denotes the stopping time, i.e. the time of default of a levered

�rm, while TT denotes the time when the rating-trigger level is attained.

To have a meaningful problem, we can focus on those step-up bonds that imply

TT < Tb, i.e. the step-up occurs before the �rm defaults. It is apparent that a

step-up bond design so that the coupon δc after a step-up will never be paid to

debt holders but the �rm defaults before, is not optimal to increase the value of a

�rm that uses a straight consol bond. Intuitively, this is due to the fact that for

TT ≥ Tb the coupon payments to debt holders are like those of a straight consol

bond but the potential increase of the coupon obligation can result in an earlier

costly default.

With standard pricing techniques, we can evaluate the equity value S in (2) as

of time t0 in the following way:

S0 = (1 − τ)
[

(

x0

r − µ
− c

r

)

−
(

xb

r − µ
− c

r

)(

x0

xb

)β

− (δ − 1)c

r

(

(

x0

xT

)β

−
(

x0

xb

)β
)

]

, (3)

where xb and xT are the cash �ow levels that determine the corresponding stop-

ping times, i.e. Tb = inf{s; xs = xb} and TT = inf{s; xs = xT}. β < 0 is given as

the (negative) root of the characteristic equation σ2

2
y(y − 1) + µy − r = 0 in y:

β = −
µ − σ2/2 +

√

2 r σ2 + (µ − σ2/2)2

σ2
.

β depends on the characteristic parameters µ and σ that drive the cash �ow pro-

cess and the risk-free rate r. To emphasize the dependence on σ, we sometimes

write β(σ). The term
(

x
x(�)

)β

, that plays an important role for all security values,

has the interpretation of a probability-weighted discount factor, i.e. the present

value of one unit of account that is paid out if and only if the process xt hits the

boundary x(�) from above for the �rst time. Therefore 0 <
(

x
x(�)

)β

≤ 1 holds.

Equation (3) shows that the equity value with the step-up feature equals the

equity value with an outstanding straight debt issue (�rst line) for the given de-

fault barrier xb plus an additional term which accounts for the additional coupon

payments once the step-up has taken place, i.e. the trigger level xT has been

attained. Since xT ≥ xb, this component is always positive (for δ > 1) and thus
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reduces the equity value.

Analogous reasoning leads to the debt value. However, due to the absolute pri-

ority rule, we need to specify the value of debt in case of default. In line with

most of the literature (see e.g. Goldstein et al., 2001; Morellec, 2004; Hackbarth

et al., 2007), we assume that in case of default the debt value equals the value

of an unlevered �rm minus proportional bankruptcy costs α. The default value

L(xt) at the cash �ow level xt is then given by

L(xt) = (1 − α)(1 − τ)
xt

r − µ
.

We note that a default either means a restructuring of the �rm or a liquidation.

As long as both events are associated with bankruptcy costs, it is not crucial for

us to distinguish between the two events.

Applying the general solution, we obtain the following representation for the

present value of debt D:

D0 =
c

r
+
(

L(xb) −
c

r

)

(

x0

xb

)β

+
(δ − 1)c

r

(

(

x0

xT

)β

−
(

x0

xb

)β
)

. (4)

In line with the equity value S, we can understand the debt value D as the sum

of two components. The �rst two terms correspond to the value of a straight

bond for a given default barrier xb. The last term captures the present value of

an increase of the coupon due to a rating-trigger.

The value of the levered �rm, which we denote by V is then the sum of (3) and

(4): V = S + D .

In general, the initial owners of the �rm face the problem to design the step-

up bond so that the �rm value is maximized in t0 given the initial cash �ow level

x0. In our setup, this is done by choosing some optimal security design, i.e. by

�xing the terms of the debt issue (c, δ, xT ). Note that these decision variables are

contractible. Once the debt is issued, the �rm acts in favor of the equity holders

rather than the entire �rm value. Thus, the default barrier xb, which cannot be

part of a contract, is chosen by the �rm so that the equity value is optimized. As

a consequence, the optimization problem of the �rm reads:

max
(c,δ,xT )

V (c, δ, xT , x�
b)

s.t. (5)

x�
b = arg max

xb

S(c, δ, xT , xb).
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Since a default can only take place after the step-up event, i.e. when the �rm

has straight debt with a coupon δc outstanding, the solution to the constraint is

given by a version of the the well-known optimal default barrier (see e.g. Goldstein

et al., 2001):

x�
b = δc · (r − µ)

r

β

(β − 1)
, (6)

This barrier is a result of the smooth-pasting condition of the equity value S in

the cash �ow xt.
6 The barrier xb is linear in the coupon δc and independent of

the actual cash �ow level xt.

Now, we can plug in the solution for the default constraint in order to obtain the

optimal design of the step-up bond that maximizes the �rm value. We �nd that

bonds with a step-up feature are not required for an optimal �rm value. We state

this as

Proposition 1 (Suboptimality without frictions) It is not optimal for a �rm

to issue a rating-trigger step-up bond, as long as there are no agency con�icts

regarding risk-shifting and no problems of asymmetric information.

It is easily veri�ed that the derivative of V with respect to the trigger level

xT is given by
∂V

∂xT

= cτ
(δ − 1) (−β)

rxT

(

x

xT

)β

,

which is apparently positive for any choice of c > 0 and δ > 1. Thus, a trigger

barrier xT below the current cash �ow level x0 is not optimal.

The intuition for why the step-up feature always destroys �rm value, given that

problems regarding risk-shifting and asymmetric information are not present, is

that the step-up bond increases the coupon obligation at a time when the �rm

generates lower cash �ows. In line with the notion of an optimal debt ratio, the

�rm prefers to reduce its debt volume rather than to increase it when the cash

�ows and also the �rm value are low. If it was attractive for the �rm to have a

high coupon obligation after a decline of the cash �ows, then the �rm value would

bene�t from additional tax shields when paying the high coupon directly after

the bond issuance rather than after a decline of cash �ows. As a consequence,

6 It can be shown that the result of the value-matching and smooth-pasting condition is

equivalent to the maximization of the equity claim. See e.g. Dixit (1993) or Dixit and

Pindyck (1994).
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the existence of step-up bonds cannot be explained within this basic set-up and

we need to incorporate additional model features.

3 Agency Con�icts

3.1 Optimal Step-up Bond Design

In this section, we assume that the �rm has operational �exibility, i.e. the pos-

sibility to change the investment program. More precisely, in line with most of

the literature on asset substitution (see e.g. Leland, 1998; Ericsson, 2000; Flor,

2006), we consider the case that the manager-owners of the �rm have a unique,

irreversible opportunity to alter the risk pro�le of the assets in place in the sense

that the volatility of the cash �ow process can be increased from σ to σH , while

all other parameters remain una�ected.

In the case of straight debt, equity holders hold a convex claim in the state vari-

able. Thus, they have an incentive to increase investment risk to the detriment of

ex ante �rm value, which is known as risk incentive or asset substitution problem.

Absent any possibility for debt holders to discipline or to put sanctions on the

manager-owners, the latter will immediately increase the risk after the debt is

issued. This risk-shift, however, will be anticipated by the debt holders and thus

the �rm is only able to place its debt issue at the unfavorable high risk terms.

Obviously, the �rm would be better o� and could add �rm value, if this agency

con�ict could be mitigated. In what follows, we explore the capability of step-up

bonds to resolve this con�ict. To stress the point, where our analysis departs

from existing results, we give a short review of the approach taken in Bhanot and

Mello (2006).

Restricted Step-Up Bond Design

To assess the e�ciency of a step-up provision to mitigate the agency con�ict,

Bhanot and Mello (2006) pursue the following approach: Replace a given straight

bond issue with a step-up bond that raises the same amount of debt, but which

gives equity holders the incentive not to engage in asset substitution. If such

a bond design exists, and the corresponding equity value increases, the step-

up bond would be �rm value enhancing since the debt value is held constant

by de�nition. Otherwise, step-up bonds destroy �rm value. In more formal
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terms, use the notation D̃ (c, δ, xT , σ) and S̃ (c, δ, xT , σ) to denote the debt and

equity value for a bond issue that is characterized by (c, δ, xT ). Note that this

includes the case of straight debt, where the triple is trivially given as (c, 1, x0).

Additionally, we explicitly refer to the risk parameter σ.

Then, the above reasoning translates into the following two restrictions:

D̃ (c, 1, x0, σH) = D = D̃ (c0, δ, xT , σ) , (7)

S̃ (c0, δ, xT , σ) ≥ S̃ (c, 1, x0, σH) . (8)

The initial straight bond issue is substituted by a step-up bond (c0, δ, xT ) such

that the debt value remains unchanged at D. To e�ectively prevent the risk-

shift, the step-up bond must be designed such that equity holders in fact have

no incentive to engage in asset substitution, which is the requirement in (8). It

is important to stress that the risk-shifting policy in Bhanot and Mello (2006) is

exogenously restricted to a one time decision in t0, i.e. equity holders can switch

the investment program only right after debt issuance.7 The feasible contracts

that satisfy the two conditions (7) and (8) are illustrated in �gure 1. The param-

eter values used in this �gure refer to the standard case considered throughout

this paper. The left diagram indicates the step-up bond contracts (c, δ, xT ) for a

�rm with low risk σ that have the same value as a straight bond for a �rm with

high risk σH . The middle panel plots those step-up bond contracts that satisfy

condition (8). The third diagram is a merged version of these two diagrams. Im-

portantly, it reveals that the surface from the left panel does not have a common

point with the equity-value-increasing contracts from the second panel. Hence,

there are no contracts that satisfy both requirements simultaneously, and thus

a step-up provision seems not to be e�cient. The intuition for why a solution

(c, δ, xT ) for (7) and (8) does not exist, is because the straight bond under a

high-risk-regime has a relatively high coupon compared to the step-up bond in

the low-risk-regime. Thus, the low coupon size of a step-up bond reduces the

present value of tax shields at the cost of the equity value. Hence, equity holders

have no incentive to prevent a risk-shift when the coupon of the new contract

is su�ciently low and advantages from debt disappear. As a consequence, the

�rm should not focus on a step-up bond with an identical value like a straight

bond but it must consider the issuance of a step-up bond having the following

7 “The equityholders opt for an alternative policy as soon as capital structure choices are made

and debt is sold. The change in investment policy is assumed a one time and irreversible

change.” Bhanot and Mello (2006), p. 81.
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Figure 1: Optimality conditions for step-up bonds as substitutes in the contract space.

The left panel shows the surface in the contract space (c, δ, xT ) for which the the debt value of a straight bond equals the value of a

step-up bond, i.e. such that (7) is satis�ed. The solid area plotted in the middle panel indicates the triples (c, δ, xT ) for which the

incentive compatibility condition for the equity holders (i.e. (8)) is ful�lled. The right panel combines both conditions and shows

that there exists no point where both conditions are simultaneously satis�ed. The risk parameters are: σ = 0.2 and σH = 0.3. The

remaining parameter values are: x0 = 1, r = 0.07, µ = 0.05, α = 0.15 and τ = 0.35.
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two properties: (i) A risk-shift does not take place due to the step-up provision,

and (ii) a reasonably high amount of (rating-trigger step-up) debt is issued to

bene�t from tax shields, which are primarily attractive for low-risk �rms.

The next section will show that relaxing the requirement to raise an identical

amount of debt leads to the result that the step-up provision is actually an at-

tractive bond feature for many cases in contrast to Bhanot and Mello (2006), who

conclude that step-up bonds are typically not optimal (see Bhanot and Mello,

2006, Remark 6, p. 91).

Optimal Step-Up Bond Design

The discussion above has shown that the existing results are obtained under two

restrictions: (i) Debt values are exogenously held constant, and (ii) the risk-

shifting decision is restricted to occur only in t0. In our approach, we allow for a

more general risk-shift in the sense that the �rm can increase its risk at an arbi-

trary point in time rather than immediately after the bond issuance. Secondly,

since the step-up feature is contractible, we determine the optimal contract as

the one which maximizes the �rm value. In more formal terms, we address a

three-dimensional optimization problem.

We formalize a risk-shift by introducing another threshold xσ at which the manager-

owners change the cash �ow process from low to high risk.8 Apparently, if a �rm

has a rating-trigger step-up bond outstanding, the barrier xσ at which the �rm

increases the risk must be above or equal to the rating-trigger barrier xT . This

is a consequence of the fact that after debt issuance, the �rm acts in favor of

the equity holders. Since the �rm e�ectively has a straight bond with coupon δc

outstanding once the cash �ow hits xT , the �rm will de�nitely increase its risk

at this barrier as long as it has not done so before. Therefore, we can restrict

ourselves to the case xT ≤ xσ. With analogous notation, we can express the

equity value as

St = (1 − τ)Et

[

∫ T�

t

e�r(s�t)(xσ
s − c) ds +

∫ TT

T�

e�r(s�t)(xσH
s − c) ds

+

∫ Tb

TT

e�r(s�t)(xσH
s − δc) ds

]

,

8 Note that we consider a costless risk-shift. Introducing fixed switching costs would be

straightforward. Clearly, switching costs would unambiguously result in a later risk-shift,

and thus their explicit modelling would not add any relevant additional economic insights

to our model.
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where Tσ = inf{s; xs = xσ} and the notation xσH indicates that the higher

di�usion parameter is involved. Evaluating the above expression and the corre-

sponding expression for the debt value, we �nd

S0 = (1 − τ)
{

(

x0

r − µ
− c

r

)

−
(

xb

r − µ
− c

r

)(

x0

xσ

)β (
xσ

xb

)βH

−

(δ − 1)c

r

[

(

x0

xσ

)β (
xσ

xT

)βH

−
(

x0

xσ

)β (
xσ

xb

)βH ]}

(9)

D0 =
c

r
+
(

L(xb) −
c

r

)

(

x0

xσ

)β (
xσ

xb

)βH

+

(δ − 1)c

r

[

(

x0

xσ

)β (
xσ

xT

)βH

−
(

x0

xσ

)β (
xσ

xb

)βH ]

, (10)

where βH is shorthand for β(σH) and indicates that the high risk is involved.

Note further that according to (6) the optimal default boundary depends on

β(·). Since the risk-shift occurs before the default threshold is attained, xb in the

above expressions is determined using βH = β(σH) rather than β = β(σ).9

To determine the optimal design of a step-up bond in the presence of a risk-

shifting possibility, the �rm faces a similar optimization problem as in (5), i.e.

the �rm value is maximized with respect to the step-up bond features (c, δ, xT ).

The di�erence is that not only the default barrier xb is set by the �rm in order

to maximize the equity value after debt issuance but also the risk-shifting barrier

xσ, because a risk-shift is not contractible. The �rm value follows from the sum of

(9) and (10). These considerations result in the following optimization problem:

max
(c,δ,xT )

V (c, δ, xT , x�
b , x

�
σ)

s.t. (11)

(x�
b , x

�
σ) = arg max

xb,x�

E(c, δ, xT , xb, xσ).

To solve the optimization problem in (11), we already clari�ed the optimal

solution of xb in the previous section, so it remains to be shown how the risk-

shifting barrier is optimally set. To this end, it is helpful to rewrite the equity

9 In order to be precise, we should write this as xH
b . However, to ease notation, we omit the

superscript if no explicit reference is needed.
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value in (9) as follows:

S0 = (1 − τ)
(

x0

r�µ
− c

r

)

− (1 − τ)
(

x0

x�

)β (
x�

xT

)βH

· Q, (12)

with: Q ≡
(

c
r
(δ − 1) +

(

xT

xb

)βH
(

xb

r�µ
− δc

r

)

)

.

Note that Q is independent of the risk-shifting strategy xσ. Thus, the maximiza-

tion of the equity value S in xσ is equivalent to the maximization (minimization)

of the factor
(

x
x�

)β (
x�

xT

)βH

given that Q is negative (positive). One can easily

show that
∂

∂xσ

(

x

xσ

)β (
xσ

xT

)βH

> 0

holds. Apparently, the earlier the �rm increases the risk of the cash �ow process

(i.e. xσ is higher), the earlier a given barrier xT is hit. As a consequence, we can

directly derive the optimal solution for xσ as

x�
σ =











x0 if Q < 0

xT if Q > 0

[xT , x0] if Q = 0

. (13)

The optimal risk-shifting policy is to switch to the more risky investment either

instantaneously or to wait until the trigger threshold is attained. The result

has an intuitive interpretation. The term Q is the sum of the present value of

the additional coupon payment in perpetuity minus the value of the option to

default conditional on arriving at the level xT . If the absolute value of the option

exceeds the value of the additional coupon payment then Q < 0 and it is optimal

for equity holders to switch immediately to the high risk strategy. In that case

the disadvantage from additional coupon payments is only moderate relative to

the advantage given by the option to voluntarily default. On the other hand, if

the value of the additional coupon payment exceeds the absolute option value,

then Q > 0 and equity holders will �nd it optimal not to increase the risk until

the trigger threshold xT has been hit. Note that Q itself depends on the terms

of the step-up bond (c, δ, xT ). For notational convenience, we will call bonds for

which a risk-shift is not optimal before xT , i.e. Q > 0, as bonds that satisfy the

risk mitigation property.

With a step-up factor δ close to one, the step-up property is not very pronounced

and the �rm has no incentive to prevent an increase of the risk to avoid additional

coupon payments. Formula (6) for the optimal default barrier con�rms that
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in this case Q is always negative. Conversely, if the step-up factor δ and the

trigger barrier xT are su�ciently high, the step-up feature is very severe. Thus,

it is plausible that the �rm wants to prevent a step-up trigger which implies no

voluntary risk-shift. In this case, Q is positive because the factor
(

xT

xb

)βH

tends

to zero but the �rst term c
r
(δ − 1) is very large. We summarize these �ndings as

Proposition 2 (Endogenous risk-shifting policy) If a �rm has an arbitrary

rating-trigger step-up bond outstanding and manager-owners have a unique irre-

versible possibility to change the risk from σ to σH > σ, they will either increase

the risk promptly or wait until the cash �ow process x hits the rating-trigger bar-

rier xT . Other risk-shifting strategies xσ with xT < xσ < x0 are never optimal.

If the asset substitution problem is to be solved by the issue of a step-up

bond, proposition 2 tells us that the terms of the bond have to be set such that

Q ≥ 0. At Q = 0, where the manager-owners are indi�erent with respect to the

timing of the risk-shift, we assume that they act in favor of the �rm value so that

xσ equals xT .

Figure 2: Critical Step-Up Barrier xT (δ) and Risk Mitigation Area

The diagram shows the combinations (δ, xT ), which satisfy the risk mitigation property

(i.e. Q ≥ 0), as the grey shaded area. The other combinations (δ, xT ) either violate the

risk mitigation property (xT is below the convex function xT (δ) for those δ) or the trigger

barrier xT would exceed the default barrier xb (xT is below the dashed line for those δ)

which contradicts a reasonable step-up design. The other parameter values are: x0 = 1,

c = 2, σ = 0.2, σH = 0.3, α = 0.15, τ = 0.35, r = 0.07, and µ = 0.05.
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Figure 2 visualizes the part of the (δ, xT )-space (given some arbitrary coupon

c) for which Q is positive or negative. The dashed line indicates all trigger bar-

riers xT which are equal to the default threshold xb. Thus, this line excludes the

region on the right side from this line because for those pairs (δ, xT ) the step-up

feature is not relevant as the default barrier xb is above the trigger barrier xT .

In the region below the convex solid curve, the risk mitigation property is not

satis�ed, i.e. the pairs (δ, xT ) imply Q < 0. In other words, for a given xT , the

step-up factors δ are too low to provide a su�cient incentive for the �rm to post-

pone a risk-shift.

Consequently, the remaining shaded region contains all feasible, incentive com-

patible combinations of xT and δ, which might be candidates for the optimal

design of the step-up bond. Appendix A.1 shows that the optimal design of a

step-up bond must consist of pairs (δ, xT ) from the boundary indicated by the

bold section of the convex curve. An intuitive explanation for the fact that there

is no interior solution in the shaded region is as follows: Since the step-up of the

coupon has a negative e�ect on the �rm value, as long as the riskiness of the

assets is given, the �rm wants to keep the step-up factor on a level that is as

low as possible for a given trigger barrier xT which implies Q = 0. From this

equality we can deduce a relation between a minimum xT and δ that satis�es the

risk mitigation property, i.e.

xT (δ) = xb

(

c(µ − r)(δ − 1)

r xb + c(µ − r)δ

)1/βH

= xb(c, δ)
(

(βH − 1)(1 − δ)δβH�1
)1/βH (14)

Note that the trigger threshold is a multiple of the default threshold xb which

itself is a function of c and δ.

Figure 2 also shows that the relation between the minimum xT and δ is negative,

i.e. for a given combination of xT and δ, a lower xT can only be achieved by

increasing δ. This is plausible, since a lower xT means that the risk mitigation

property is supposed to apply for a longer time. Thus, the step-up feature δ, that

prevents the risk-shift, must be more pronounced.

Equation (14) provides the solution to the incentive constraint, and is key to

determining the optimal �rm value. Let us denote by S the set of pairs (δ, xT )

that lie on the bold section of the graph xT (δ) in �gure 2. S is characterized by

a minimum and a maximum step-up factor δ. A δ above the minimum step-up

factor δmin ensures that the step-up factor is high enough so that the �rm has

no incentive to increase the risk before the cash �ow x hits the barrier xT . A δ

16



below the maximum step-up factor δmax implies that a risk-shift (and accordingly

a step-up) in fact takes place before the �rm defaults. We can de�ne the set S
as follows:

S = {(δ, xT );∀ δ0 ∈ (δmin, δmax) : xT = xT (δ0)} (15)

where δmin is the smallest δ such that xT ≤ x0:

δmin = min{δ0; xT (δ0) ≤ x0}

and δmax is the highest δ such that xT ≥ xb:

δmax = max{δ0; xT (δ0) ≥ xb}.

We will give a precise characterization of δmin and δmax when analyzing whether

a step-up bond is worthwhile for a �rm or not.

The important property that a step-up bond can add �rm value, if and only if

the solution (δ�, x�
T ) to the maximization problem lies within the set S, reduces

the problem to two dimensions: the coupon c and the step-up factor δ. This is

due to the fact that the choice of the step-up factor δ uniquely determines the

trigger barrier xT (δ). The remaining determination of the solution is conceptually

straightforward but algebraically tedious and follows from �rst- and second-order

conditions. Appendix A.2 contains the corresponding details. The optimal step-

up design is characterized by the following closed-form representations, which we

summarize in

Proposition 3 (Optimal design � Asset substitution) Given that a step-

up bond is optimal to mitigate the asset substitution problem, the optimal design

(c�, δ�, x�
T ) of a rating-trigger step-up bond is given by the following closed-form

formulae:

c� =
(β − 1)

β

r

(r − µ)

(

1 − βH

β

)�1/βH

x�
T , (16)

δ� =
β (βH − 1)

βH (β − 1)
, (17)

x�
T = x0

((α

τ
− α + 1

)

(βH − β)
)1/β

. (18)
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Plugging in the optimal coupon c� and the optimal step-up factor δ� in (6) yields

the optimal default threshold

x�
b =

(

1 − βH

β

)�1/βH

x�
T . (19)

The optimal �rm value as of time t = 0 simpli�es to

V �
0 =

(1 − τ)

r − µ
x0 +

τ

r − µ
x�

b . (20)

As a result of the closed-form representations for the optimal design of the step-

up provision δ� and x�
T , we can derive the following testable implications, which

we state as

Corollary 4 If a �rm optimally uses the step-up provision to counter the risk-

shifting problem, a more pronounced risk-shifting problem, i.e. a higher σH , results

in a higher step-up factor δ� and a lower trigger barrier x�
T .

This claim directly follows from the derivatives of (17 ) and (18) for βH taking

into account that β is negative and a strictly increasing function in σ. The

intuition for this implication is as follows: If the risk-shifting problem is more

pronounced, the �rm wants to postpone the risk-shift for a longer time which

results in a lower optimal trigger barrier x�
T . To ensure that a risk-shift can in

fact be prevented, a higher step-up factor is required in order to provide the

equity holders with the incentive to keep the risk on the lower level σ.

From the optimal triple (c�, δ�, x�
T ), it is hardly possible to assess if a step-up

bond can mitigate the agency costs. The step-up feature is attractive for the �rm

if and only if the optimal bond design (c�, δ�, x�
T ) results in a feasible relationship

between the default barrier x�
b , the trigger barrier x�

T , and the initial cash �ow

x0, i.e.:

x�
b < x�

T < x0.

This inequality is equivalent to the condition that the step-up factor δ lies in the

interval (δmin, δmax).

In the next section, we determine the conditions for which δ lies within the in-

terval (δmin, δmax) and thus, a step-up bond can add �rm value.

Turning to δmax �rst, note that from (14), xT (δ) is a multiple of xb(δ), where

the multiple depends on δ and βH and can be larger or smaller than one. However,
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a multiple smaller than one would imply that xT < xb, which is not meaningful.

Thus, we can deduce a maximum for δ which satis�es the risk mitigation property

and results in an optimal trigger threshold xT ≥ xb, denoted by δmax as

δmax =
βH − 1

βH

.

Note that δmax is determined by the intersection of the dashed graph with the

solid line in �gure 2 and is independent of c.10 Comparing δmax with the optimal

δ�, we �nd that

δ� =
β (βH − 1)

βH (β − 1)
=

β

(β − 1)
δmax < δmax.

Moreover, the upper boundary is never violated in the optimum. Alternatively,

the solution for the optimal default barrier (19) indicates that the default bar-

rier cannot exceed the optimal trigger barrier because the term
(

1 − βH

β

)�1/βH

is

always below one. This technical property has an important economic interpre-

tation and we highlight this result as

Corollary 5 Every �rm that optimally uses a step-up bond does not fully exclude

a risk-shift but admits a region (x�
b ; x

�
T ) with positive length in which the risk of

the �rm’s assets is high.

Next, turn to δmin. In general, this follows from the solution of xT (δ) = x0

in δ with xT (δ) given as in equation (14). Unfortunately, this equation cannot

be evaluated algebraically for an arbitrary coupon c. However, since we are only

interested in the optimal triple (c�, δ�, x�
T ), we can plug in the optimal coupon

c�(δ) given any δ in (14). The corresponding equation has an algebraic solution

given by

δmin =
βH(β − 1)(ατ − α − τ) − τ

βH(β − 1)(ατ − α − τ)
.

In general, as long as the the optimal step-up factor is above δmin, the optimal

bond design is more favorable than a straight bond. While we could establish

that the inequality δ� < δmax for the upper barrier always holds, the inequality

δ� > δmin does not need to be valid in general. We can write δmin as

δmin = δ� · βH(β − 1)(ατ − α − τ) − τ

β(βH − 1)(ατ − α − τ)
,

10 It can also be shown that the function xT (δ) has its minimum in δmax. This property further

justifies the notion of a maximal δ, since although a higher δ is feasible, it is not possible to

thereby decrease xT .
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from which we can deduce an equivalent condition for δmin < δ�, i.e. a condition

such that the fraction above is smaller than 1. This condition simpli�es to

βH − β >
τ

(α + τ(1 − α))
. (21)

Since the inequality involves all relevant parameters, it completely characterizes

the conditions under which a step-up provision can mitigate the agency con�ict in

the sense that it increases �rm value. These fundamental �ndings are summarized

in the next proposition.

Proposition 6 (Optimality conditions � Asset substitution) Suppose that

a �rm has an initial investment risk of σ and a unique, irreversible opportunity

to increase the risk to σH > σ, which is observable but not contractible. An op-

timally designed step-up bond adds �rm value relative to a straight bond, if and

only if condition (21) is satis�ed.

It is instructive to see for which pairs (σ, σH) a step-up feature is worthwhile

for the �rm, i.e. to determine the conditions on (σ, σH) under which it is value-

enhancing to solve the agency con�ict through issuing a step-up bond. For this

purpose, we have to translate condition (21) into a corresponding relation for the

risk parameters. Figure 3 indicates when a step-up provision is attractive. The

convex function σ̄H(σ) refers to the case that condition (21) holds with equality

and is drawn as the solid graph. Since βH − β strictly increases with σH , condi-

tion (21) is always satis�ed for σH > σ̄H(σ). Thus, for all risk levels σH above

the critical level σ̄H(σ), a step-up feature is attractive for the �rm, while for risk

levels σH < σ̄H(σ) it is not. Thus, the shaded region contains all pairs (σ, σH)

for which a step-up bond is able to mitigate the agency problem.

The �rst important observation from this �gure is that for �rms with a suf-

�ciently low initial risk σ, a step-up bond is always worthwhile as long as the

possibility to (at least slightly) increase the risk σH − σ > 0 exists. Interestingly,

as the initial risk σ is increased, the minimum risk σ̄H(σ) after a risk-shift for

which a step-up bond is still attractive increases more than proportionally. An

intuitive explanation for this result is as follows: The value of a �rm with straight

debt is a convex and declining function in the business risk σ. Thus, a risk-shift

primarily hurts �rms with a low initial risk σ. For this reason, a step-up feature,

that prevents a risk-shift, is especially chosen by low-risk �rms.
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Figure 3: Optimal Use of Step-Up Bonds

The diagram shows the combinations (σ, σH) as grey shaded area, for which �rms optimally

issue step-up bonds. The dotted line σH = σ indicates the minimum value for the feasi-

ble high risk σH The other parameter values are: α = 0.15, τ = 0.35, r = 0.07, and µ = 0.05.
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It can even be shown that there exists a limit on σ beyond which step-up bonds

are never optimal. To formally prove this, note that β(σ) < 0 is monotonically

increasing in σ towards a limit equal to zero. Therefore, the maximum initial β

such that condition (21) is satis�ed, is given by the critical value β:

β = − τ

(α + τ(1 − α))
,

which in turn determines the maximum σ. This critical value follows from equa-

tion (21) with βH = 0. In line with intuition, once the initial risk σ is very

high, it is no longer worthwhile anymore to implement any step-up feature. We

summarize these �ndings as

Corollary 7 Firms can increase the �rm value with a step-up bond relative to

the use of a straight bond in the presence of a risk-shifting possibility in two

cases: (i) The initial risk of the �rm is su�ciently low. (ii) The risk-shifting

possibility, σH − σ, is very pronounced and the initial risk σ is below a threshold

σ. Conversely, if the initial risk is too high, i.e. σ exceeds σ, then a step-up bond

is never worthwhile for the �rm independent of the risk-shifting option.
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3.2 Numerical Results for the Optimal Step-up Bond De-

sign

We close this section by providing numerical results for the optimal step-up bond

design. This exercise gives us some evidence to what extent the theoretical pre-

dictions are consistent with empirical observations.

Since the �rm value and the step-up features are homogenous of order one in x0,

we normalize x0 = 1 without loss of generality. For the parameters, we choose

a base case scenario of: µ = 0.05, r = 0.07, α = 0.15 and τ = 0.35 which is

broadly consistent with previous literature.11 Suppose the initial investment risk

is σ = 0.15.

Given these parameter choices, table 2 reports numerical results for the optimal

step-up bond design for four di�erent risk-shifting scenarios (i.e. σH is assumed

to be 0.175, 0.2, 0.25, and 0.3 respectively). Independent of the severity of the

Table 2: Numerical Results for the Optimal Contract Design

The table reports the optimal step-up bond design for four di�erent risk-shifting scenarios.

The initial investment risk is σ = 0.15 and can be increased to either σH = 0.175, 0.2,

0.25, or 0.3. The other parameter values are: x0 = 1, α = 0.15, τ = 0.35, r = 0.07, and

µ = 0.05.

σH 0.175 0.2 0.25 0.3

c� 2.63 2.54 2.46 2.42

c�/D� (in %) 7.45 7.45 7.45 7.45

δ� − 1 (in %) 5.88 12.49 27.85 45.98

x�
T 0.914 0.822 0.758 0.732

P{TT < 1} (in %) 46.44 13.37 3.92 2.14

asset substitution problem (proxied by the level of σH), the coupon rate (c�/D�)

remains at a constant level of 7.45%. The step-up factor (in percentage terms)

varies between 5.88% and 46%, while the step-up threshold x�
T declines from 0.914

11 See e.g. Goldstein et al. (2001), Huang and Huang (2002), Morellec (2004), Hackbarth et al.

(2007) and Bhanot and Mello (2006). The parameter choices are close to Bhanot and Mello

(2006) to enable direct comparison, except for α, i.e. bankruptcy costs. While we choose

α = 0.15, which is broadly consistent with empirical evidence according to Andrade and

Kaplan (1998) or more recently Strebulaev (2007), proportional bankruptcy costs in Bhanot

and Mello (2006) are 60 percent.
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to 0.732. To put these values into perspective, the last row in table 2 reports the

probability that the trigger threshold is hit within a one-year time horizon.12

By comparing the numerical values to the step-up bonds issued by Deutsche

Telekom as reported in table 1, we �nd broadly consistent results for the sce-

nario σH = 0.2. The bond XS0161488498 was issued in 2003, where Deutsche

Telekom was rated BBB+ by Standard&Poor’s. It provides a coupon rate of

7.5%, which is increased by 0.5% in case of a step-up event. This corresponds

to a percentage increase of 6.6%. The step-up event itself occurs if S&P down-

grades Deutsche Telekom below the current BBB+ rating. According to statistics

by S&P published in 2003, the probability that a currently BBB+ rated corporate

is downgraded is approximately 13.64%. Thus our theoretical results match the

coupon rate and the step-up probability quite closely, while predicting a slightly

higher step-up factor for the scenario σH = 0.2.

4 Asymmetric Information

In the previous section, we have analyzed the possibility of step-up bonds to mit-

igate agency con�icts. Now, in this section, we turn to the competing hypothesis

for the use of rating-trigger step-up bonds which is the presence of asymmetric

information problems. Therefore, we will analyze the possibility for �rms to use

step-up bonds to convey information about the true prospects of the �rm to the

capital market. In general, the �rm’s prospects can refer to multiple character-

istics of the cash �ow process xt. We will consider a setup, where asymmetric

information exists with respect to the expected return µ of the cash �ow process.

Thus, it is natural to denote a �rm with a high µ as a high-productivity company

in contrast to a low-productivity �rm having a low µ.

Instead of considering µ as the unobservable quantity, we could also deal with

asymmetric information about the �rm’s business risk σ. However, a common

criticism related to asymmetric information about σ is the fact that within a

12 The probability that a step-up occurs before time t, i.e. P{TT < t} is equivalent to the prob-

ability that the running minimum of the process xt at time t is smaller than the threshold

level xT . From standard results (see e.g. Björk, 1998, ch.13) this can be computed as

P{TT < t} = N

(

zT − µ̂t

σ
√

t

)

+ exp

{

2µ̂zT

σ2

}

N

(

zT + µ̂t

σ
√

t

)

,

where zT = log(xT /x0), and µ̂ = µ − σ2/2.
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continuous-time framework investors can perfectly estimate the true value of σ

from an observed path of cash �ows over a �nite time period by computing its

quadratic variation (see e.g. Williams, 1977). Hence, asymmetric information

about the business risk is only meaningful if before the security issuance date,

prices of any securities of the particular �rm cannot be observed. However, the

ultimate source of the information asymmetry is not crucial for our analysis. Ac-

tually, it can be shown that the two sources of information asymmetry lead to

the same result for the optimal design of step-up bonds.

Due to the higher danger of a rating-trigger and the associated increase of in-

terest payments, a step-up feature is primarily painful for low-productivity �rms

rather than high-productivity �rms. Hence, we can expect that a step-up feature

might be an attractive device for a high-productivity �rm to credibly distinguish

itself from a low-productivity �rm. Given that such a separating equilibrium

exists, we want to �gure out the optimal design of the step-up feature. This,

in turn, will enable us to identify potential di�erences relative to the optimal

step-up bond design when agency problems are present.

For our analysis we consider two types of �rms, each having a cash-�ow process

following the same dynamics as described in (1), except that the type G (good)

�rm has a cash �ow drift µG, while the type B (bad) �rm has a drift equal to

µB with µG > µB. Thus, type G is the high-productivity �rm, while B is the

low-productivity �rm. The potential investors know that every �rm can be of

type G or B, but they have per se no indication about a �rm’s true type. The

owner-managers of the initially unlevered �rm, however, know the true type which

causes a typical problem of asymmetric information. Since we focus on the abil-

ity of step-up bonds to signal the true type, we abstract from further incentive

con�icts such as the risk-shifting possibility addressed in the previous section.

After issuance of a step-up bond, the owner-managers obtain the proceeds from

the debt issue in form of a special dividend and they might still hold the equity

of a now levered �rm. To determine the �rm value or even more precisely the

wealth obtained by the initial owner-managers, the use of the equity position is

crucial. In general, the two alternatives are to hold the shares or to sell them. We

can state right from the outset that in the extreme case that the owner-managers

sell their shares to outsiders immediately after the debt issuance, a separating

equilibrium cannot exist. Apparently, in this case the wealth obtained by the

owner-managers equals the equity and the debt value according to the percep-
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tion of the capital market. Assume that a bond design for good �rms existed

that could signal a more favorable �rm value so that the sum of the values of

equity and debt (according to the market perception) increased. In this case,

every other arbitrarily bad �rm could also choose this design (without cost) and

the owner-managers would obtain the same wealth as the owner-managers of the

good �rm. Therefore, every �rm could mimic a good �rm so that a credible bond

design that signals favorable information about the �rm does not exist. The for-

mal reason for this �nding is the fact that the Spence-Mirrlees condition does not

hold, which requires that the marginal costs for sending a signal di�er between

the two types.13 This condition is clearly violated because the owner-managers

obtain the same payo� irrespective of the �rm’s true type.14

However, in the case that some of the shares are kept by the owner-managers, the

step-up feature might be able to act as a signalling device. To analyze this im-

portant characteristic of step-up bonds, we assume for simplicity that the owner-

managers hold their stocks in�nitely long so that the market perception is not

relevant for the equity value.15

We will use the following notational convention: Cm
i,j denotes a claim (�rm value

or debt value) on the cash-�ow of a �rm that is actually of type i ∈ (B,G),

but which is perceived by outsiders as being of type j ∈ (B,G), while o�ering a

contract (i.e. sending the message) m ∈ {(c, δ, xT ); c ≥ 0, δ ≥ 1, xb < xT ≤ x0}.

Note that m = (c, 1, x0) describes a plain bond, while we indicate a (yet undeter-

mined optimal) step-up bond by m = (c, δ, xT ). Since the relevant equity value

held by the owner-managers is evaluated with the knowledge of the true type,

the equity value Em
i will carry only one subscript which refers to the true type of

the �rm. Like for the other claims, the superscript m indicates the bond design.

For example, D
(c,δ,xT )
G,B denotes the debt value of a high-productivity �rm being

perceived as a low-productivity �rm that has issued a step-up bond. The �rm

value from the perspective of the owner-managers is

V m
i,j = Em

i + Dm
i,j.

13 For the Spence-Mirrlees conditions, see e.g. Bolton and Dewatripont (2005).
14 The above reasoning is consistent with results by Nachman and Noe (1994) who find that

a (plain) debt contract is optimal to minimize mispricing losses if conditions are such that

separating equilibria cannot exist.
15 Manso et al. (2007) consider traded equity. However, they assume that the information

asymmetry is dissipated immediately after securities are issued. (“The growth rate becomes

public knowledge after the firm raises capital.” Manso et al. (2007), p. 20.)
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This objective indicates that for a given market perception j, the true type of the

�rm still matters as the equity value Em
i is driven by the true type i rather than

the market perception j, while the debt position Dm
i,j is priced according to the

market perception j. Therefore, the costs for a good �rm from issuing a step-up

bond can di�er from those of a bad �rm.

To analyze the outcome of a signalling game, we apply the concept of a per-

fect Bayesian equilibrium which is mainly characterized by the fact that posterior

beliefs are determined through Bayes’ rule. We denote beliefs about the true type

i ∈ (B,G), conditional on the information content from the choice (c, δ, xT ) of the

bond contract, as π(i|(c, δ, xT )). The signals, i.e. the bond contract characteris-

tics, are chosen such that they maximize the objective function of the informed

party. Posterior beliefs about out-of-equilibrium actions are not restricted and

can take on any value in [0, 1]. The objective function is the expected �rm value:

E[V
(c,δ,xT )
i ] = π(B|(c, δ, xT )) · V (c,δ,xT )

i,B + π(G|(c, δ, xT )) · V (c,δ,xT )
i,G .

In general, possible equilibria in a signalling game can be classi�ed into separat-

ing, pooling, or semi-separating equilibria, and it is well-known that the kind of

equilibrium depends on the actual conditional beliefs of the uninformed party.

Since it is our focus to analyze whether step-up bonds are a device to credibly

signal the �rm’s true type, we restrict our interest to separating equilibria of

the signalling game. Thus, it is natural to consider a situation, where each type

of �rm chooses a di�erent message in equilibrium. Therefore, we consider the

following posterior beliefs:

π(G|(c, δ, xT )) = 1, π(B|(c, δ, xT )) = 0.

If the uninformed party receives the message (c, δ, xT ), with δ > 1 and xb < xT <

x0, i.e. it observes that the �rm o�ers a step-up bond, she beliefs the �rm to

be of type G. For any other contract design (c0, δ0, x0
T ), beliefs are such that the

uninformed party considers the �rm to be of type B, i.e.

π(G|(c0, δ0, x0
T )) = 0, π(B|(c0, δ0, x0

T )) = 1.

From the proof of proposition 1, we know that a step-up feature is always costly

in the sense that it decreases the �rm value. Thus, if the B type considers to

choose a di�erent step-up design than (c, δ, xT ), only a plain consol bond can ever
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be optimal, i.e. (c0, δ0, x0
T ) = (c, 1, x0), and we can restrict our attention to the

situation where only two contracts are o�ered.

A separating equilibrium is then characterized by the fact that given these pos-

terior beliefs, a �rm actually issues a step-up bond only if it is type G, while the

type B �rm actually prefers straight debt, which justi�es the beliefs.

The posterior beliefs, as speci�ed above, are intuitively plausible. The step-up

feature is always costly in the sense that it decreases the �rm value. For a G

type �rm, it might be worthwhile to take on this cost in order to be recognized as

such, while the B type �rm will only have an incentive to mimic the behavior of

the G type as long as the bene�t of more favorable debt terms will outweigh the

costs associated to the step-up provision. As long as this net bene�t is positive,

the B type �rm will mimic the issuing behavior of the G type �rm and bene�t

from the mispricing gain. Only a step-up design such that this net bene�t turns

negative can be considered as a candidate equilibrium outcome. Therefore we

must impose the incentive compatibility condition

V
(c,1,x0)
B,B ≥ V

(c,δ,xT )
B,G

for the B type, and likewise

V
(c,δ,xT )
G,G ≥ V

(c,1,x0)
G,B

for the G type. Since the issuance of plain debt will be considered as a signal

that the �rm is of type B, the coupon rate in that case is determined through

the parameter µB, i.e. (c�(µB), 1, x0).

In general, the incentive compatibility constraints determine the set of sepa-

rating equilibria, and this set might contain many of them. From the perspective

of the G type �rm, it is natural to consider the problem to �nd some optimal

equilibria, where optimality in our setup refers to the maximization of the �rm

value. In this sense, we can summarize the step-up bond design problem under

asymmetric information as the following optimization program:

max
fc, δ, xT g

(

V
(c,δ,xT )
G,G

)

s.t. (22)
{

V
(c,δ,xT )
G,G ≥ V

(c,1,x0)
G,B

V
(c,1,x0)
B,B ≥ V

(c,δ,xT )
B,G

27



The G type �rm tries to achieve the highest possible �rm value, conditional on

the fact that a separating equilibrium can be achieved, where the design of the

bond issue perfectly reveals the true type.16 Therefore, the incentive compatibil-

ity inequalities act as constraints to the maximization problem.17

Analogous to the asset substitution problem in section 3, a quick inspection

of the optimization program brings up two problems: (i) What is the optimal de-

sign of the step-up contract (c, δ, xT ) given the asymmetric information problem?

(ii) What are the conditions under which a separating equilibrium exists, i.e. a

step-up bond is feasible to overcome the information asymmetry?

Consider part (i) �rst. Assume that the conditions for a separating equilib-

rium are ful�lled, i.e. the incentive compatibility constraints are satis�ed, then

we want to determine which choice of the triple (c, δ, xT ) maximizes the value

of a type G �rm. In principle, one might proceed as follows: Take the incentive

compatibility constraint of the B type �rm as an equality and solve it for c, δ,

or xT . Then plug in the solution in V
(c,δ,xT )
G,G and look for an optimum. However,

there does not exist an algebraic solution to V
(c,1,x0)
B,B = V

(c,δ,xT )
B,G in (c, δ, xT ), since

di�erent exponents βG, βB are involved additively.18 Therefore, we cannot supply

closed-form solutions in general.

However, we are able to derive an important qualitative result about the optimal

equilibrium step-up bond design. To state this result in the next proposition, it

is helpful to introduce the following simple notational convention. Denote the

coupon rate after a step-up has taken place as ĉ. Obviously, this is de�ned as

ĉ ≡ δ c.19

16 Note that this formulation of the problem not only aims at establishing a separating equi-

librium (or a set of equilibria) but already tries to single out a specific equilibrium of the

signalling game. Since the market is aware of the optimizing behavior of the firm, this puts

restrictions on their out-of-equilibrium beliefs. Actually, an equilibrium solution of the pro-

gram (22) would satisfy, or would be the one that survives the Cho-Kreps intuitive criterion

(see Cho and Kreps (1987)). This refinement selects a unique pure-strategy equilibrium that

represents the least-cost separating equilibrium.
17 To be precise, we should also note that, as in the previous section, the condition x∗

b =

arg maxxb
E

(c,δ,xT )
G is a further constraint to the maximization problem, which we omitted

to ease notation.
18 Note that βG and βB are defined as βG = β(µG), and βB = β(µB).
19 Likewise, the notation (c, δ, xT ) is equivalent to (c, ĉ, xT ). A straight bond can be indicated

by (c, 1, x0), or (0, c, x0).
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Proposition 8 (Optimal design � Signalling) The optimal contract which

maximizes the �rm value V
(c,δ,xT )
G,G of type G for a given value V

(c,δ,xT )
B,G of the type

B �rm, is characterized by c → 0 and δ → ∞ such that 0 < δc = ĉ < ∞.

The proof, which is given in appendix A.3, relies on an application of the im-

plicit function theorem and shows that for any ĉ the substitution rate dc
dxT

which

holds the corresponding �rm value constant, is negative and smaller for the type

G �rm than the substitution rate for the type B �rm. Since the substitution rate

is negative, an increase in xT must be compensated by a reduction in c to hold

the �rm value constant. Because dc
dxT

is smaller for type G than for type B, only

a smaller reduction in the coupon rate c is necessary to keep the �rm value of the

type B �rm constant. This, however, means that the same variation in c and xT

that leaves the �rm value of type B constant, results in a higher �rm value for

type G. Since this property holds for any ĉ and all initial values of c and xT , the

optimal choice is such that c → 0 and xT is chosen as high as possible, subject

to the constraint that a separating equilibrium exists.20

This result is remarkable, since in comparison to the optimal design of the step-

up bond in the presence of the asset substitution problem, it provides an entirely

di�erent equilibrium prediction. We will discuss these aspects in more detail in

section 5.

With respect to the second issue, i.e. the question under which conditions

a step-up bond can actually establish a separating equilibrium, we obtain the

following result that contrasts remarkably the equilibrium predictions under the

asset substitution hypothesis. We state this in the following proposition. The

proof is in appendix A.4.

Proposition 9 (Optimality conditions � Signalling) For every admissible

parameter values 0 < α < 1, 0 < τ < 1, 0 < σ, and every information asym-

metry, such that 0 < µB < µG < r, there always exists a contract (0, ĉ, xT ) for

which a separating equilibrium can be established.

20 Note that exactly the same result holds true, if the information asymmetry would refer to

the diffusion parameter σ. As shown in appendix A.3, the crucial part in the proof relies on

an inequality which involves βG and βB . For µB < µG, it holds that β(µG) < β(µB) < 0.

If instead we consider the two types to differ in their riskiness, i.e. to have a high-risk (bad)

and a low-risk (good) firm, then it is easily verified that for σG < σB the same inequality

β(σG) < β(σB) < 0 is obtained and thus the proof remains valid.
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A comparison of proposition 9 to proposition 6 (optimality conditions under asset

substitution) reveals the following important di�erence: While in the presence

of asymmetric information, the use of appropriately designed step-up bonds al-

ways improves the wealth of equity holders relative to straight debt contracts,

the step-up feature cannot help to add �rm in some cases with a risk-shifting

problem where the initial risk σ is very large.

To close this section, it is worth pointing out that our analysis has shown that

there exist separating equilibria with di�erent bond designs. This complements

and extends the results by Manso et al. (2007) who have shown that separating

equilibria exist for cases where the signal is given as the choice between debt and

equity.

5 Comparison of Equilibrium Predictions

In contrast to Bhanot and Mello (2006), but in accordance with Manso et al.

(2007), we �nd that step-up bonds can be both a device to mitigate the asset

substitution problem and an instrument to signal favorable �rm characteristics.

In order to distinguish which of the two explanations is consistent with empirical

evidence, and to deduce potentially testable hypotheses, it is instructive to com-

pare the corresponding equilibrium predictions. Such a comparison can be made

with respect to two aspects: (i) The contract design if a step-up bond is optimal,

and (ii) the conditions under which a step-up design is optimal.

Consider aspect (i) �rst. Table 3 summarizes the equilibrium predictions con-

cerning the optimal step-up design, i.e. the optimal choice of the triple (c, δ, xT ).

If agency problems are present, a relatively low threshold xT is optimal together

with a step-up factor as low as possible to prevent a risk-shift before the cash

�ows hit the trigger barrier xT . The fact that a low barrier xT is chosen is intu-

itive because the step-up threshold determines the time when a risk-shift occurs.

Since the �rm wants to postpone a risk-shift as long as possible, the optimal

decision about (δ, xT ) balances the bene�ts from the risk mitigation property to

the associated costs of the step-up feature.

A completely di�erent optimal step-up design is obtained, if asymmetric infor-

mation problems are present. To achieve a separating equilibrium, the step-up
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Table 3: Summary of Equilibrium Predictions

Bond design Asset substitution Signalling

c > 0 → 0

δ Lowest possible δ (for

given xT )

δ → ∞ but �nite ĉ > 0

xT Lowest possible xT (for

given δ)

Highest possible xT so

that incentive condi-

tions hold

feature must be su�ciently costly for the low-productivity �rm such that it has no

incentive to mimic a high-productivity �rm. Importantly, as long as the step-up

provision prevents the bad �rm from mimicking the good �rm, the actual design

of the step-up provision only a�ects the value of the good �rm. The objective of

the good �rm, in turn, is to �nd the least-cost separating equilibrium. This is

accomplished with a relatively high step-up threshold together with an in�nitely

high step-up factor. While for agency con�icts a low trigger barrier is necessary

to prevent a risk-shift until the cash �ows xt hit the threshold xT , the �rm under

asymmetric information cannot alter its risk after a debt issuance. Thus, for

problems of asymmetric information the threshold xT plays a minor role once the

�rm has issued debt. This characteristic rationalizes the fundamental di�erences

between the optimal step-up bond design under risk-shifting and asymmetric in-

formation.

These results enable us to draw important conclusions concerning the use of

step-up bonds as empirically observed. Section 3.2 as well as data in Lando

and Mortensen (2004) and Houweling et al. (2004) show that the step-up in the

coupon rate is on the order of 50 bp, or roughly 10% of the initial coupon rate.

Thus, even without carrying out statistical tests, the empirical observations of

the design of step-up bonds regarding e.g. the step-up factor δ rather favors the

agency con�ict hypothesis than the asymmetric information hypothesis.

This �nding gives us some tentative explanation for why in particular �rms from

the telecom industry make use of step-up bonds. Recent results in Eisdorfer

(2008) suggest that risk-shifting behavior is more likely to occur in �rms with

more growth options. Since the telecom industry is considered to have a rela-

tively large number of growth options, the risk-shifting problem is supposed to

be more pronounced in this industry.
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Finally, consider aspect (ii), i.e. the comparison with respect to the optimality

conditions. The important di�erence between the optimal use of step-up bonds

under informational and risk-shifting problems is that a step-up feature can al-

ways be added to a straight bond in order to solve informational problems but

it is only able to mitigate risk-shifting problems in some cases. Recall that for a

high initial business risk and/or the possibility to moderately increase the risk,

the step-up feature does not solve the risk-shifting problem, while step-up bonds

can always be issued to overcome problems of asymmetric information about the

�rm’s productivity.

6 Conclusion

The observation that �rms have recently issued rating-trigger step-up bonds

brings up the question: What is the reason for a �rm to commit itself to in-

crease the debt service at a time when �nancial conditions have worsened? This

question is even more puzzling in the framework of the well-established tradeo�

models for the optimal capital structure. Two frictions, that are notorious in

�nancial economics, might serve as explanations: Agency con�icts and asymmet-

ric information problems. Results from the existing literature have discarded the

former, but con�rmed the latter hypothesis.

Our analysis contributes to this debate in the following points: First, we provide

closed-form solutions to the optimal step-up design when problems of risk-shifting

are present. Furthermore, we derive conditions under which it is optimal to solve

the agency con�ict by the inclusion of a step-up provision. Contrary to previ-

ous results, we can explain that rating-trigger step-up bonds are indeed able to

mitigate the agency con�ict. Second, in line with existing results, we �nd that

step-up bonds can establish a separating equilibrium and thus overcome asym-

metric information problems. We complement the existing results by showing

that this speci�c bond design (rather than the choice between debt and equity)

can establish such a separating equilibrium. Moreover, we provide an important

result about the optimal design, which shows that the equilibrium predictions

between the two hypotheses di�er remarkably: A �nite step-up factor, whose

order of magnitude is consistent with observed step-up bonds, is optimal for

bonds under a risk-shifting problem, while the optimal step-up factor in the case
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of asymmetric information is found to be in�nite. Third, we derive di�erent

conditions for the characteristics of �rms that issue step-up bonds to mitigate

either agency con�icts or problems of asymmetric information. While �rms only

use step-up bonds to mitigate the risk-shifting problem when the business risk

can be increased considerably and/or the initial business risk is su�ciently low,

an appropriate step-up bond always helps to signal favorable information. An

empirical test of these implications is left for further research.
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A Appendix

A.1 Proof of Relation (14)

In the text, it was shown that the solution to the optimal risk shifting threshold

is

x�
σ =











x0 if Q < 0

xT if Q > 0

[xT , x0] if Q = 0

.

In principle any combination of (δ, xT ) that satis�es the inequality Q ≥ 0 has

the risk mitigation property and might therefore be a candidate for the optimal

solution. Denote the set of pairs that satisfy the risk mitigation property as

M = {(δ, xT ); Q ≥ 0, xb ≤ xT ≤ x0}. It is shown in the following that there does

not exist an interior maximum for the �rm value in M.

For this it is enough to check for a given δ whether there exists a maximum in

xT . Write the �rm value as

V (δ, xT ) = A1 +

(

x0

xT

)β
(

A2 + A3

(

xT

xb

)βH

)

where:

A1 =
(1 − τ)x0

r − µ
+

τc

r
, A2 =

τ(δ − 1)c

r
, A3 = −τδc

r
− α(1 − τ)xb

r − µ

The derivative of V with respect to xT reads

∂V

∂xT

=

(

x0

xT

)β
A3(βH − β) − A2β

xT

(

xT

xb

)βH

from which we can deduce the necessary condition

x�
T = xb

(

− A2β

A3(β − βH)

)1/βH

This optimum, however, is a minimum as can be veri�ed by the su�cient condi-

tion:

∂2V

∂x2
T

=

(

x0

xT

)β

[

A2β(1 + β) + A3(β − βH)(1 − βH + β)
(

xT

xb

)βH

]

x2
T
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The sign of the second derivative depends on the term in squared brackets. Plug-

ging in x�
T into this term yields A2 β βH which is obviously positive for all param-

eter values. So, we can conclude that

∂2V

∂x2
T

∣

∣

∣

∣

xT =x�

T

> 0,

i.e. there does not exist a maximum in M.

A.2 Proof of Proposition 3

The thresholds xb and xT can be written as

xb(δ, c) = δ c
(r − µ)βH

r(βH − 1)

xT (δ, c) = c
(r − µ)βH

r(βH − 1)

(

(βH − 1)(1 − δ)δβH�1
)1/βH

Note that both are linear in c, which allows for the de�nitions

Xb(δ) ≡ xb(δ, c)/c, XT (δ) ≡ xb(δ, c)/c.

We can write the �rm value

V =

(

(1 − τ)x0

r − µ
+

τc

r

)

−
(

α(1 − τ)xb

r − µ
+

τc

r

)(

x0

xT

)βL
(

xT

xb

)βH

+

τ(δ − 1)c

r

(

x0

xT

)βL [

1 −
(

xT

xb

)βH ]

as a function of c

V (c) =
(1 − τ)x0

r − µ
+

τc

r
− c1�βL (K1 − K2) , (23)

where K1 and K2 are de�ned as

K1(δ) =

(

α(1 − τ)δ βH

r(βH − 1)
+

τ

r

)(

x0

XT

)βL
(

XT

Xb

)βH

K2(δ) =
τ(δ − 1)

r

(

x0

XT

)βL

(

1 −
(

XT

Xb

)βH

)

which can be considered as functions in δ but are independent of c.
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Di�erentiating V with respect to c yields the �rst-order condition

∂V (c)

∂c
=

τ

r
− (1 − βL)c�βL (K1 − K2)

c� =

(

(1 − βL)(K1 − K2) r

τ

)1/βL

(24)

Substituting back (24) into (23) and simplifying gives

V (δ) =
(1 − τ)x0

r − µ
+

τβL

r(βL − 1)

(

(1 − βL)(K1(δ) − K2(δ)) r

τ

)1/βL

With the de�nitions of K1 and K2, we obtain

V (δ) =
(1 − τ)x0

r − µ
+

τβL

r(βL − 1)

[βH(βL − 1)(α − ατ + τ)(δ − 1)

τ
(

x0 r(βH − 1)
(

(βH − 1)(δ − 1)δβH�1
)�1/βH

βH(r − µ)

)βL
]1/βL

Di�erentiating this term w.r.t. δ results in

∂V (δ)

∂δ
=

βHδ − βL(1 + βH(δ − 1))

βH(βL − 1)r(δ − 1)δ

[βH(βL − 1)(α − ατ + τ)(δ − 1)

τ
(

x0 r(βH − 1)
(

(βH − 1)(δ − 1)δβH�1
)�1/βH

βH(r − µ)

)βL
]1/βL

δ� =
βL (βH − 1)

βH (βL − 1)
(25)

Existence of this solution can be veri�ed by substituting δ� into the numerator

of the �rst fraction in the above derivative.

βHδ� − βL(1 + βH(δ� − 1)) = 0

For the given parameter restrictions, the following relations can be established

and verify the uniqueness of this solution

∂2V (δ)

∂δ2

∣

∣

∣

∣

δ=δ�

< 0

∂V (δ)

∂δ

∣

∣

∣

∣

δ<δ�

> 0

∂V (δ)

∂δ

∣

∣

∣

∣

δ>δ�

< 0
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I.e. in δ�, the second derivative is negative, giving the su�cient condition for

a maximum. For δ < δ�, the �rst derivative is positive, while for δ > δ� it is

negative, which veri�es that there is no other optimum.

The optimal solution δ� can be plugged in c�(δ) and c�(δ) can be plugged in

xb(δ, c(δ)) and xT (δ, c(δ)). It can be shown that this gives the following optimal

expressions:

x�
T = x0

(

(α − ατ + τ)(βH − βL)

τ

)1/βL

x�
b =

(

1 − βH

βL

)�1/βH

x0

(

(α − ατ + τ)(βH − βL)

τ

)1/βL

=

(

1 − βH

βL

)�1/βH

x�
T

c� =
(βL − 1)

βL

r

(r − µ)

(

1 − βH

βL

)�1/βH

x0

(

(α − ατ + τ)(βH − βL)

τ

)1/βL

=
(βL − 1)

βL

r

(r − µ)
x�

b

From these considerations, it follows that the optimal values of the �rm, the debt

and the equity are

V � =
(1 − τ)x0

r − µ
+

τ

r − µ
x�

b

E� =
(1 − τ)x0

r − µ
− (1 − τ)(βL − 1)

(r − µ)βL

x�
b

D� =
(βL − 1 + τ)

(r − µ)βL

x�
b

A.3 Proof of Proposition 8

As noted in the text, the proof for the stated result relies on the analysis of the

substitution rate between c and xT .

Let us use VG,G and VB,G as a shorthand notation for V
(c,ĉ,xT )
G,G and V

(c,ĉ,xT )
B,G , i.e. the

�rm value of type G and type B �rms if both were considered as type G because

of having issued a step-up bond, where c is the initial coupon rate, ĉ is the coupon

rate after the step-up, and xT is the step-up threshold. Obviously, only 0 < c < ĉ

is consistent with a step-up bond. From the de�nitions of VG,B and VB,B, the
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following derivatives can be obtained:

∂VG,G

∂c
=

τ

r

(

1 −
(

x0

xT

)β(µG)
)

> 0, (26)

∂VB,G

∂c
=

∂VG,G

∂c
+

1 − τ

r

(

(

x0

xT

)β(µB)

−
(

x0

xT

)β(µG)
)

> 0, (27)

∂VG,G

∂xT

=
(c − ĉ) τβ(µG)

(

x0

xT

)β(µG)

r xT

> 0, (28)

∂VB,G

∂xT

=
∂VG,G

∂xT

+
(c − ĉ) (1 − τ) (A(xT , µG) −A(xT , µB))

r xT

? 0. (29)

where: A(xT , µ) = β(µ)

(

x0

xT

)β(µ)

Note the following properties of
(

x0

xT

)β(µ)

:

0 <

(

x0

xT

)β(µ)

< 1, lim
xT !x0

(

x0

xT

)β(µ)

= 1, lim
xT !0

(

x0

xT

)β(µ)

= 0,

∂

∂µ

(

x0

xT

)β(µ)

=

(

x0

xT

)β(µ)

log

(

x0

xT

)

∂β(µ)

∂µ
< 0

∂

∂xT

(

x0

xT

)β(µ)

= −β(µ) x0

x2
T

(

x0

xT

)β(µ)�1

> 0.

With these properties it follows that the derivatives in (26)-(28) are always

positive. In contrast, this need not be the case for (29). The reason is that

(A(xT , µG) −A(xT , µB)) may either be positive or negative. However, it can be

shown that (A(xT , µG) − A(xT , µB)) changes sign only once. To see this, take

the �rst two derivatives of A(xT , µ) w.r.t. µ

∂

∂xT

A(xT , µ) = −β(µ)2

xT

(

x0

xT

)β(µ)

< 0,

∂2

∂x2
T

A(xT , µ) =
β(µ)2(1 + β(µ))

x2
T

(

x0

xT

)β(µ)

Thus, A(xT , µ) is decreasing and for all xT either always convex or concave.

Furthermore, limxT !0 A(xT , µ) = 0, and limxT !x0 A(xT , µ) = β(µ). From this,

it follows that A(xT , µG) and A(xT , µB) can cross only once, or the di�erence

(A(xT , µG)−A(xT , µB)) changes sign only once. Since β(µG) < β(µB) < 0, there

exists a critical threshold for which (A(xT , µG)−A(xT , µB)) < 0 for values of xT
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above that threshold.

More importantly, this implies the following result: There exists some x0
T for

which
∂VB,G

∂xT

∣

∣

∣

xT

{

> 0, for xT > x0
T

< 0, for xT < x0
T

With these preliminaries, we can now proceed to the main part. For some

arbitrary choice of ĉ, consider the substitution rate between c and xT so that the

�rm value remains constant. The basic idea is to see what happens to the value

VG,G of the G type, as the two contract components c and xT are varied in such

a way that the value VB,G of the mimicking B type is held constant.

According to the implicit function theorem, the substitution rates can be de�ned

as:

SRG =
dc

dxT

= −
∂VG;G

∂xT

∂VG;G

∂c

, SRB =
dc

dxT

= −
∂VB;G

∂xT

∂VB;G

∂c

.

In other words, SRG is the substitution rate such that
∂VG;G

∂c
dc +

∂VG;G

∂xT
dxT = 0,

and in a similar way for type B. From the derivatives in (26)-(29), it follows

that SRG is always negative, while SRB may change sign. In particular, we

have established above that there exists some critical x0
T , such that 0 < SRB for

xT < x0
T , and that SRB < 0 for x0

T < xT .

(i) We treat the case 0 > SRB �rst. A positive substitution rate for type B

means that an increase in the threshold xT must be accompanied by an increase

in the coupon rate c in order to hold the �rm value VB,G constant. This, however,

unambiguously increases the �rm value of type G, since both derivatives (
∂VG;G

∂c

as well as
∂VG;G

∂xT
) are positive. Therefore, the optimal contract can never include

a threshold below the critical value x0
T . For values above x0

T , SRB turns negative.

(ii) For the case SRB < 0, it is crucial to analyze whether SRG < SRB < 0

holds. If this relation holds, we can conclude that for an increase in xT , the

decrease in c, which is necessary to hold �rm value constant, is more pronounced

for type G than for type B. In other words, an increase in xT compensated with

a decrease in c that leaves VB,G constant, would increase the type G �rm value

VG,G.

Note that SRG < SRB < 0 can be rearranged to SRB

SRG
< 1. Using the de�nition
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of SR, and plugging in the derivatives (26)-(29), yields

SRB

SRG

=

∂VB;G

∂xT
/

∂VB;G

∂c

∂VG;G

∂xT
/

∂VG;G

∂c

=

∂VB;G

∂xT
/

∂VG;G

∂xT

∂VB;G

∂c
/

∂VG;G

∂c

< 1

⇔
1 + 1�τ

τ

β(µG)
�

x0
xT

��(�G)
�β(µB)

�

x0
xT

��(�B)

β(µG)
�

x0
xT

��(�G)

1 + 1�τ
τ

�

x0
xT

��(�B)
�

�

x0
xT

��(�G)

1�
�

x0
xT

��(�G)

< 1

Note that SRB

SRG
is independent of c and ĉ. By straightforward algebraic manipu-

lations the above inequality can be written as

1

β(µB)

(

1 −
(

x0

xT

)�β(µB)
)

<
1

β(µG)

(

1 −
(

x0

xT

)�β(µG)
)

. (30)

One can show that the derivative of 1
β

(

1 −
(

x0

xT

)�β
)

with respect to β

∂

∂β

(

1

β
− 1

β

(

x0

xT

)�β
)

=
1

β2

(

x0

xT

)�β
[(

1 −
(

x0

xT

)β
)

+ log

(

(

x0

xT

)β
)]

is always negative. To see this, recall from above that D =
(

x0

xT

)β

is always

bounded by 0 and 1, i.e. D ∈ (0, 1). Therefore, the term in squared brackets

(1 − D) + logD is always negative. Since β(µG) < β(µB), inequality (30) is

always ful�lled, and the assertion follows.

A.4 Proof of Proposition 9

We use the following notational convention: c�(µ) will denote the optimal coupon

and we de�ne ξ(µ) = x�
b/c = (µ�r)β(µ)

r(1�β(µ))
.

From the result in proposition 8, we know that the optimal contract has the

characteristic that c → 0 and δ → ∞, such that δc < ∞. We de�ne δc as ĉ. The

incentive compatibility constraints can be written as:

ICG = V
(0,ĉ,xT )
G,G − V

(c,c,x0)
G,B

ICB = V
(0,ĉ,xT )
B,G − V

(c,c,x0)
B,B

The explicit formulae for ICG and ICB can be written as:

ICG = Λ1 − ΛG
2 − Λ3(µG) + Λ4

ICB = Λ1 − ΛB
2 − Λ3(µB) + Λ4,
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where

Λ1 =

(

x0

c�(µB)ξ(µB)

)β(µB)(c�(µB)

r
− (1 − α)(1 − τ)c�(µB)ξ(µB)

r − µB

)

−τc�(µB)

r
(31)

ΛG
2 =

(

x0

c�(µB)ξ(µG)

)β(µG)((1 − τ)c�(µB)

r
− (1 − τ)c�(µB)ξ(µG)

r − µG

)

(32)

ΛB
2 =

(

x0

c�(µB)ξ(µB)

)β(µB)((1 − τ)c�(µB)

r
− (1 − τ)c�(µB)ξ(µB)

r − µB

)

(33)

Λ3(·) = (1 − τ)

(

ĉ

r

(

x0

xT

)β(�)

−
(

x0

ĉξ(·)

)β(�)( ĉ

r
− ĉξ(·)

r − µ(�)

)

)

(34)

Λ4 =

(

ĉ

r

(

x0

xT

)β(µG)

−
(

x0

ĉξ(µG)

)β(µG)( ĉ

r
− (1 − α)(1 − τ)ĉξ(µG)

r − µG

)

)

(35)

Note that ICG and ICB coincide in Λ1 and Λ4 and di�er through the terms ΛG
2 ,

ΛB
2 , and Λ3(·).

Since we want to establish that there always exist some contract for which a

separating equilibrium exists, we can choose ĉ as21

ĉ�(µB, xT ) = xT
r(β(µB) − 1)

(r − µB)β(µB)

(

τ

τ + (ατ − α − τ)β(µB)

)�1/β(µB)

This choice implies, that for xT = x0, ĉ�(µB, xT ) coincides with c�(µB).

Where appropriate, we indicate that the incentive compatibility constraints are

functions of µB, µG, and the contract characteristics, xT , and ĉ, i.e. IC =

IC(µB, µG, xT , ĉ).

Lemma 10 (Characteristics) For all 0 < µB < µG < r, 0 < σ, 0 < α < 1,

and 0 < τ < 1, the following relations hold:

(i) At xT = x0 and for ĉ = ĉ�(µB, xT ),

ICB(µB, µG, xT , ĉ) = ICG(µB, µG, xT , ĉ) > 0.

(ii) For all xT ≤ x0, and all ĉ > 0,

∂ ICG(µB, µG, xT , ĉ)

∂ xT

> 0.

21 Note that this choice corresponds to the firm value maximizing coupon rate conditional on

the threshold value being chosen as xT , and µ = µB , i.e. ĉ∗(µB , xT ) = arg max V
(0,ĉ,xT )
B,B .
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(iii) For xT → 0 and for ĉ = ĉ�(µB, xT ),

ICB(µB, µG, xT , ĉ) < 0

(iv) For all xT < x0 and all ĉ ≤ c�(µB),

ICG(µB, µG, xT , ĉ) − ICB(µB, µG, xT , ĉ) > 0

Proof

Part (i): The equality part of the relation follows directly from the fact that

ICG − ICB = −ΛG
2 − Λ3(µG) + ΛB

2 + Λ3(µB)

For xT = x0, ĉ�(µB, xT ) coincides with c�, so that ΛG
2 = (1�τ) c�(µB)

r
−Λ3(µG), and

likewise ΛB
2 = (1�τ) c�(µB)

r
− Λ3(µB). Plugging in ΛG

2 and ΛB
2 directly shows that

ICG − ICB = 0 as asserted.

For the inequality part, given the above result, it is enough to show that ICB > 0.

By rearranging, ICB can be written as

ICB =
c�(µB)

r

(

(

x0

c�(µB)ξ(µG)

)β(µG)
1 + (ατ − α − τ)β(µG)

β(µG) − 1

−
(

x0

c�(µB)ξ(µB)

)β(µB)
1 + (ατ − α − τ)β(µB)

β(µB) − 1

)

Taking the �rst derivative w.r.t. µG yields

∂ICB

∂µG
= Q1

(

(α + τ − ατ − 1)
∂β(µG)

∂µG
+ (β(µG) − 1)(1 + (ατ − α − τ)β(µG))Q2

)

where: Q1 =
1

(β(µG) − 1)2

(

x0

c�(µB)ξ(µG)

)β(µG)

,

Q2 =

(

−β(µG)

ξ(µG)

∂ξ(µG)

∂µG
+ log

(

x0

c�(µB)ξ(µG)

)

∂β(µG)

∂µG

)

From their de�nitions, it holds that β(µ) < 0, and ∂β(µ)
∂µ

< 0. Similarly, 0 < ξ(µ),

and ∂ξ(µG)
∂µG

< 0. Furthermore, given that 0 < α, τ < 1, it follows that (α + τ −
ατ − 1) < 0. Finally, since x0

c�(µB)ξ(µG)
> 1, it follows that log

(

x0

c�(µB)ξ(µG)

)

> 0.

Taken together, this implies that ∂ICB

∂µG
> 0 for all µG. Since it is easy to verify

that for µG = µB, ICB = 0, this proves the assertion.
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Part (ii): Taking the �rst derivative of ICG(µB, µG, xT , ĉ) w.r.t. xT yields

∂ ICG(µB, µG, xT , ĉ)

∂ xT

= − ĉ τ β(µG)

r xT

(

x0

xT

)β(µG)

< 0

as asserted.

Part (iii): Since β(µ) < 0, it is obvious, that limxT !0

(

x0

xT

)β(µ)

= 0. Therefore,

taking the limit limxT !0 ICB(µB, µG, xT , ĉ�(µB, xT ) yields

lim
xT !0

ICB(µB, µG, xT , ĉ�(µB, xT )) = − τ x0

r − µB

(

τ

τ − β(µB)(α + τ − ατ)

)�1/β(µB)

which is always negative as asserted.

Part (iv): Denote the di�erence ICG(µB, µG, xT , ĉ)− ICB(µB, µG, xT , ĉ) as ∆IC.

By rearranging ∆IC can be written as

∆IC = (P (c�(µB)) − P (ĉ)) − R

where:

R =
c�(µB)(1 − τ)

r

(

(

x0

xT

)β(µB)

−
(

x0

xT

)β(µG)
)

P (c) = p(µB) c1�β(µB) − p(µG) c1�β(µG)

p(·) =
(1 − τ)

β(·) − 1

(

x0

ξ(·)

)β(�)

From ∂
∂xT

(

x0

xT

)β(µ)

< 0, it directly follows that R > 0. Thus, it remains to be

shown if (P (c�(µB)) − P (ĉ)) < R. We show that P (c) is a declining function in

c at least in the interval (0, c�(µB)).

Taking the �rst derivative of P (c) w.r.t. c yields

∂P (c)

∂c
= (1 − τ)

(

(

x0

c ξ(µG)

)β(µG)

−
(

x0

c ξ(µB)

)β(µB)
)

Furthermore, considering the term
(

x0

c ξ(µ)

)β(µ)

as a function in µ, and taking the

�rst derivative yields

∂

∂µ

(

x0

c ξ(µ)

)β(µ)

=

(

x0

c ξ(µ)

)β(µ)(

−β(µ)

ξ(µ)

∂ξ(µ)

∂µ
+ log

(

x0

c ξ(µ)

)

∂β(µ)

∂µ

)
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where the last term is the same as Q2 as de�ned in part (i) above and negative.

Therefore, ∂
∂µ

(

x0

c ξ(µ)

)β(µ)

< 0, and it follows that ∂P (c)
∂c

< 0. Hence, for every

ĉ < c�(µB), we have that (P (c�(µB)) − P (ĉ)) < 0 < R and the assertion follows.

Now, with lemma 10, we can prove proposition 9 from the text.

For this purpose, we have to show that there exists a (ĉ, xT ) such that ICG ≥ 0

and ICB ≤ 0. From part (i) of the lemma, ICG = ICB > 0 at xT = x0. As

xT is decreased, part (ii) shows that ICG declines monotonically, while part (iv)

shows that ICB is always smaller than ICG. Since from part (iii) ICB must be

negative, we conclude that there always exists a xT (0 < xT < x0) for which

ICB < 0 < ICG. The proposition follows.

�
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