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Abstract

Contagion represents a significant change in cross-market linkages precipitated by a crisis and is

properly measured only after taking into account the interdependence or extant linkages prevailing

between markets. Since it is well known that stock return volatilities and correlations are stochastic

in the absence of a crisis, interdependence between markets should reflect the time varying nature of

these covariances. We measure contagion in the presence of stochastic interdependence using data

on stock indices from South East Asian countries around the July 1997 crisis. Since stock return

covariances are observed with error, this suggests casting our model in a state space framework which

is estimated using a multivariate Kalman filter. In the presence of stochastic interdependence, we

find reliable evidence of contagion between Thailand and Indonesia, Malaysia, and the Philippines

but not between Thailand and Hong Kong or Singapore.
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Contagion in the Presence of Stochastic Interdependence

1 Introduction

The modeling and measurement of the comovement of stock markets continues to attract the at-

tention of economists and policymakers alike. Empirical evidence consistent with volatility in one

market spilling over into other markets has been amply documented while links between markets

have been shown to change in response to various shocks. As emphasized by previous research, to

fully address these issues requires clear definitions of the notions of volatility spillover, contagion,

and interdependence across financial markets. Moreover, sound empirical techniques are needed to

measure these quantities in the presence of potentially spurious statistical effects.

Forbes and Rigobon (2002) define contagion as a significant change in cross-market linkages following

a particular shock or crisis. Of course, this change must be measured relative to the linkages already

prevailing between markets. In other words, contagion can only be measured after taking into

account the interdependence between markets. Forbes and Rigobon’s analysis is couched within a

static framework in which the pre-crisis period is assumed characterized by a constant covariance

structure in returns. Because of the crisis, however, a potentially different but constant covariance

structure may subsequently describe returns. Within this framework, Forbes and Rigobon argue that

if cross-market linkages are calibrated by the correlation between the respective stock market returns,

then reliably detecting a change in this correlation is problematic. The problem arises because the

measured correlation between stock returns is correlated with measured stock return volatilities.1

Thus, even if the underlying population correlation and volatilities remain fixed, we can expect to

see higher measured correlations when measured volatilities are higher. This spurious link may give

rise to a potential bias in the estimation of correlation. Forbes and Rigobon derive a correction

for this bias and argue that once this bias is taken into account, there is little if any evidence of

contagion surrounding a variety of recent crises. By contrast, Chakrabarti and Roll (2002) argue
1Loretan and English (2000) also use this fact in their evaluation of correlation breakdowns during periods of market

volatility.

2



that this bias can only arise if the heteroscedasticity in returns is due solely to chance. If, as to be

expected, the true underlying volatilities actually increase around the crisis, then Chakrabarti and

Roll argue that no such bias exists and applying the Forbes and Rigobon adjustment will spuriously

reduce any contagion effect that is actually present in the data.

While it is correct to recognize that stock return volatility can change in response to a crisis, it is

also well known that, in general, the covariance of stock returns is time-varying and stochastic.2 To

the extent that correlation is stochastic, a change in correlation per se does not necessarily provide

evidence of contagion. What is required is a change in correlation exceeding what was expected ex

ante given its stochastic nature. In other words, if contagion takes into account the interdependence

between markets, this interdependence must reflect the time varying nature of covariances arising

from the normal arrival of information in the absence of a crisis.

This paper provides a multivariate stochastic covariance model to investigate contagion. We rely

on a state-space framework in which measured return covariances - volatilities and correlations

- differ from their population counterparts by measurement errors. The state of the system is

given by appropriately transformed population return covariances and we model their movement

by a first order vector autoregressive (V AR) process in which interdependence across markets is

accommodated. The fact that measured correlation is dependent upon measured volatilities can then

be explicitly accounted for by allowing correlated errors in measured volatilities and correlation. More

importantly, as our state-space framework allows for a stochastically evolving covariance structure,

we can investigate contagion in the presence of stochastic interdependence between markets.

The empirical focus of this paper is the South East Asian financial crisis of the summer of 1997.

We examine daily returns on market indices from Hong Kong, Indonesia, Malaysia, the Philippines,

Singapore and Thailand over the April 1990 through April 2002 sample period. Following others,

we date the crisis as July 1997 and assume that Thailand was “ground zero” for the crisis. When

estimating the stochastic covariance model, we reject in all cases the null hypothesis that there is

no change in the mean levels of population covariances over various post-July 1997 sample periods.

However, while we see clear evidence of increases in mean stochastic volatilities, the evidence for in-
2See, for example, Solnik, Boucrelle, and Fur (1996).

3



creases in mean stochastic correlations is mixed. While stochastic correlations of Thailand versus the

Philippines, Indonesia, and Malaysia, on average, increase post-July 1997, correlations of Thailand

with the more developed countries of Hong Kong and Singapore do not change.

Unlike our empirical methodology which follows Forbes and Rigobon and others by relying on changes

in correlation to detect contagion, other researchers propose tests that associate contagion with

changes in countries’ underlying security return data generating processes. For example, Corsetti,

Pericoli and Sbracia (2005) posit a factor model of security returns in each country. In their frame-

work an increase in measured correlation between countries’ security returns is evidence of contagion

only if this increase is due to a structural break in the factor loadings of their respective data gener-

ating processes. Corsetti, Pericoli and Sbracia’s resultant test statistic rejects the null hypothesis of

interdependence in favor of contagion from the Hong Kong stock market in October 1997 to a number

of stock markets in both emerging as well as developed economies. By contrast, Candelon, Hecq,

and Verschoor (2005) rely on the concept of serial correlation common feature in a cointegrated vec-

tor correction model to detect changes in cyclical comovements between countries’ security returns

around a given crisis. In particular, they define contagion as a change in the cyclical transmission

mechanism between the pre- and post-crisis periods, thereby rejecting the serial correlation common

feature for the full sample period. Using a generalized method of moments (GMM) procedure shown

to be robust to heteroscedasticity in security returns, Candelon, Hecq, and Verschoor cannot reject

the common cyclical null hypothesis for the Asian crisis of 1997 but find some evidence of contagion

surrounding the Mexican crisis of 1994.

Our paper is organized as follows. Section 2 introduces a multivariate stochastic covariance model

to test for volatility spillover and contagion in which the dependence between measured volatilities

and measured correlation is explicitly taken into account. Concentrating on the South East Asian

crisis, we investigate volatility spillover and contagion within this framework by allowing for a shift

in the mean levels of stochastic covariances subsequent to July 1997. Section 3 describes our data

while Section 4 provides our empirical results and discusses their economic significance. We conclude

in Section 5.
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2 Empirical Methodology

An important point raised by Forbes and Rigobon and others is that measured correlation is not

independent of measured volatilities. That being the case, the dependence between measured volatil-

ities and measured correlation affects joint tests of the null hypothesis of no change in the underlying

volatilities and correlation surrounding a crisis. Intuitively, ignoring the fact that these estimates are

themselves correlated may result in a misstatement of the statistical confidence with which this null

hypothesis is rejected. In other words, we may very well claim to detect a statistically significant shift

in the underlying volatilities and correlation around a particular crisis when no such shift actually

occurred.

In this section, we detail our methodology to investigate whether contagion has occurred between

countries being careful to take into account the dependence between measured correlation and mea-

sured volatilities. We must rely on measured volatilities and correlations because data on true

population volatilities and correlations are not available. At the same time, we also recognize that

volatilities as well as correlations are time-varying or stochastic.3 To accomplish this, we use a

linear state-space framework in which measured variables explicitly differ from their population

counterparts by observation errors and the population variables evolve stochastically through time.

Estimation is carried out by relying on the Kalman filter. Significantly, we can allow correlated

errors in measured volatilities and correlation in this framework. To the extent that correlations are

stochastic, a change in measured correlation per se does not necessarily provide evidence of conta-

gion. Indeed, contagion requires a change in correlation exceeding that which was expected ex ante

given its stochastic nature. Intuitively, contagion represents an abnormal change in correlation over

and above changes in correlation arising from the normal arrival of information in the absence of the

crisis.

We divide the discussion of our methodology into three parts. We first consider the measurement

of volatility and correlation (Section 2.1). Next we link the measured variables to their popula-

tion counterparts within a state-space framework that allows us to detect contagion (Section 2.2).

This framework also offers a natural characterization of the movement in covariances arising from
3See, for example, Campbell, Lo, and MacKinlay (1997), especially Chapter 12.2 and the references therein.
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the normal transmission mechanism prevailing between countries against which contagion must be

measured (Section 2.3).

2.1 Measuring Covariances

Stochastic volatility estimation typically relies on daily returns and treats each return as an obser-

vation. In a univariate state-space model, for example, the observation is the daily return squared

or, alternatively, the log daily return squared and this provides a natural estimate of the true log

volatility but with large error. This large observation error is ameliorated by collecting a sufficiently

long time series of daily data and assuming that the parameters governing the model remain constant

over the sample period.4

More recently, some researchers (see, for example, Anderson, Bollerslev, Diebold and Ebens (2001))

have eliminated almost all measurement error by collecting data at an extremely high frequency,

say, every few minutes, and then aggregating this intra day data into a realized daily volatility. This

approach shows promise for those markets where much is known about the underlying microstructure.

Relying on this approach for cross-market comparisons, however, would require that differences in

microstructure and, in particular, the synchronization of price quotes be taken into account.5

In this paper, we measure volatilities and correlations by grouping the n available daily returns

into m sequential non-overlapping intervals of length k days with n = m × k. We assume that the

volatilities of returns to country i and j as well as their correlation are constant across each interval

but allow these parameters to vary across the resultant m intervals.

There is an obvious tradeoff in the choice of k. At one extreme, k = 1 day and we have many

observations but a large measurement error per observation. Alternatively, we may pick k to be so

large that the measurement error becomes negligible but then the number of observations available
4Not only is this observation error large but its distribution is not normal (see Mahieu and Schotman (1998)).

Various alternative methods have been proposed to handle this non-normality; see, for example, Kim, Shephard and

Chib (1998).
5In fact, even if higher frequency data were available, the difficulties in obtaining synchronized intra day quotes

across countries would severely restrict our ability to adopt this methodology.
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for statistical estimation is concomitantly reduced. For example, if we pick k = n days then the latent

covariances are assumed fixed over the entire sample period and the model of covariance dynamics

degenerates.

Covariance dynamics in our state-space framework will be estimated by relying on the Kalman filter.

This approach provides consistent parameter estimates in general and is efficient if the assumption of

normality can be justified for the model’s resultant measurement errors. As a result, our choice of k

must be made in conjunction with normalizing transformations of the data that will ensure that the

measurement errors are indeed close to normal. Since we are assuming that the latent covariances

are fixed within each interval of length k days, the smallest choice of k to do so will allow us to more

accurately characterize covariance dynamics.

For example, if we let v2
i denote the sample variance of the returns to country i calculated using k

days of returns data, the log of v2
i approaches normality as k increases. In particular, Bartlett and

Kendall (1946) compute the skewness and kurtosis of the log chi-squared distribution for a range of

sample sizes and recommend the normal approximation for sample sizes from 5 to 10 and above.6

Also, it is well known that the Fisher transform of the sample correlation, zij , defined by

zij =
1
2
log

1 + rij

1 − rij
.

where rij denotes the sample correlation between the returns to country i and country j calculated

using k days of returns data, converges to normality at a much faster rate than rij .7

In what follows, we choose k = 5 days to balance the amount of data needed to accurately measure

covariances while leaving a sufficient number of observations to reliably estimate their dynamics.

That is, five trading days of returns to country i and country j are used to calculate sample variances,

v2
i and v2

j , and the sample correlation between these returns, rij. We then rely on the corresponding

log variances, log v2
i and log v2

j , and the Fisher transform of the sample correlation zij .

6In particular, see the results tabulated in their Table 1.
7See Anderson (1984), page 123 for further details. Johnson, Kotz, and Balakrishnan (1995) summarize information

on the distribution of the Fisher transform of the sample correlation. Moments of the distribution are provided by

Hotelling (1953) while Winterbottom (1979) points out the variance stabilizing and normalization properties of the

Fisher transform. Corsetti, Pericoli and Sbracia also use the Fisher transform in their empirical analysis.
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2.2 The Model

We estimate the following model:

yτ = ατ + d + ετ where var(ετ ) = H, τ = 1, . . . ,m (1)

ατ = Tατ−1 + ητ where var(ητ ) = Q, τ = 1, . . . ,m. (2)

Here yτ is a three-vector of measured log variances of returns to countries i and j and the Fisher

transform of their corresponding sample correlation, yτ ≡ {log v2
iτ , log v2

jτ
, zijτ

}, all measured over

the τ th window, τ = 1, . . . ,m. The state variable at τ , ατ , is the demeaned population counterpart

of yτ , and d is the mean of the state variable ατ .

Expression (1) is the measurement equation in which measured volatilities and correlations are

explicitly linked to their population counterparts. We denote the corresponding measurement errors

by ετ with covariance matrix H. To the extent that H is non-diagonal, measurement errors in

log v2
iτ , log v2

jτ
, and zijτ

are correlated and this correlation is then taken into account when filtering

the population parameters from their measured counterparts.

The transition equation, expression (2), models the dynamics of the underlying population volatilities

and correlations. To capture their stochastic nature, we assume a vector autoregressive structure for

ατ with transition matrix T and residual errors ητ with covariance matrix Q. The second moments of

the countries’ returns are allowed to stochastically vary over time to capture the effects of the arrival

of information in the absence of a crisis. While it is plausible to assume that the transition equation

errors are multivariate normal, recall from our previous discussion that multivariate normality is

only an approximation for the measurement errors.8

Contagion in our model represents deviations from this normal relation brought about by a particular

crisis. To see this, notice from expression (1) that we can write Eτ (yτ ) = ατ +d and so the parameter

vector d can be interpreted as the mean of the underlying population covariances. If the time
8However, this should be a fairly accurate assumption for windows of size k = 5 days. This being the case, the linear

filter maximum likelihood procedure will provide consistent parameter estimates and any loss of efficiency should be

minimal.
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period [τ , τ̄ ] is posited to be the crisis period, we test whether the levels of underlying population

covariances are different in the crisis period versus outside the crisis period, ∆d = 0. Consequently,

we test whether the underlying population covariance parameters shift as a result of the crisis while

explicitly taking into account their stochastic nature via expression (2). In other words, we measure

contagion relative to the covariance dynamics prevailing in the absence of the crisis.

2.3 Interdependence

By explicitly modeling covariance dynamics in the absence of a crisis, we capture the notion of in-

terdependence or “. . . strong linkages between two economies that exist in all states of the world.”

(Forbes and Rigobon (2002), page 2224). These linkages reflect the presence of fundamental economic

channels along which shocks in one economy are propagated to another, notwithstanding the issue of

contagion. Trade, for example, ensures that the effects of, say, a currency devaluation in one economy

dissipate to other economies, perhaps with a lag. Alternatively, random global shocks may simulta-

neously affect the fundamentals of several economies. Interdependence recognizes that economies are

linked and this linkage is the mechanism by which shocks are propagated across economies. Conta-

gion occurs when a particular crisis alters these linkages. In our model this manifests itself as a shift

in the levels of the underlying population covariances. That is, a statistically significant change in d

when estimated over the crisis period as compared to its value estimated outside the crisis period.

To further understand interdependence, it may be tempting to directly apply causality tests9 to

measured volatilities and measured correlations in the hope that the results shed light on the causal

relations prevailing between their population counterparts. As expression (2) models the dynamics

of the underlying population volatilities and correlations, ignoring measurement error, tests for in-

stantaneous and Granger causality would reduce to tests of rather simple zero restrictions on the

corresponding transition matrix T and covariance matrix Q.10 For example, correlation does not
9Granger causality captures lead-lag relations in the population covariance structure in the sense that one element

of the covariance structure, say, volatility, may be more accurately predicted if information on, say, correlation, is

also taken into account. The notion of instantaneous causality, by contrast, captures contemporaneous linkages as the

forecast of one element of the population covariance structure, again say volatility, can be improved when knowledge

of the contemporaneous value of another element, correlation, is also included.
10See Lütkepohl (1993), especially pages 35-43, for details.
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Granger cause volatility only if T is lower triangular while correlation does not instantaneously

cause volatility only if Q is diagonal.

Unfortunately, these results will be misleading precisely when measured quantities differ from their

population counterparts by correlated measurement errors. In particular, even if there are no causal

relations amongst the latent quantities, evidence of both Granger and instantaneous causality will

be detected between measured volatilities and correlations.

To see this and investigate the nature of the causal relations prevailing between measured volatilities

and correlations, yτ ≡ {viτ , vjτ zijτ }′, it is useful to rewrite our linear state-space model, expressions

(1) and (2) as follows. Applying the Kalman filter in steady-state gives

α̂τ |τ−1 = (T − K)Lα̂τ |τ−1 + Kyτ−1

where α̂τ |τ−1 is the optimal forecast of ατ based on data observed through interval τ − 1 with

corresponding steady-state covariance matrix11 P , L is the lag operator, and K is the Kalman gain

matrix defined in steady-state by

K = TP (P + H)−1.

Provided that the eigenvalues of (T − K) are all inside the unit circle, we can write

α̂τ |τ−1 = [I − (T − K)L]−1Kyτ−1

which implies the following equivalent V AR(∞) representation for yτ

yτ = [I − (T − K)L]−1yτ−1 + ντ

where var(ντ ) = P + H. This expression implies that

(I − [I − (T − K)L]−1L)yτ = ντ

or

yτ = (I − [I − (T − K)L]−1L)−1ντ

11P is obtained as a solution to the algebraic Riccati equation. See Harvey (1990), especially page 118. As noted by

Harvey, it is usually difficult to obtain an explicit solution to this equation.
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which gives the V MA(∞) representation or Wold decomposition for yτ which can be written as

yτ =
∞∑

j=0

Φjντ−j where Φ0 = I and Φj = T j−1K for j ≥ 1.

From the V MA(∞) representation for yτ , we see that measured correlation does not Granger cause

measured volatility only if the matrices Φj are each lower triangular for all values of j ≥ 1. This

represents a series of non-linear restrictions that will, in general, not hold if measurement errors are

correlated and H is non-diagonal. In particular, even if T is diagonal (no latent Granger causality)

and Q is diagonal (no latent instantaneous causality), a non-diagonal H (correlated measurement

errors) gives that in steady-state the gain matrix K ≡ Φ1 is non-diagonal, consistent with Granger

causality amongst the measured volatilities and correlations. Similarly, measured correlation does

not instantaneously cause measured volatility only if var(ντ ) = P + H is diagonal. However, for H

non-diagonal this condition, in general, will not hold. In other words, correlation between measure-

ment errors will impart correlation, both contemporaneously as well as through time, into measured

covariances, implying that the results of causality tests applied to measured covariances will not be

informative about the underlying causal relations prevailing between their population counterparts.

3 Data and Summary Statistics

To investigate contagion, we collect daily observations on a number of market indices. Focusing

on the South East Asian crisis of the summer of 1997 and relying on Datastream’s Total Market

Price Indices, we consider the following South East Asian stock markets: Hong Kong (TOTMHK$),

Indonesia (TOTMID$), Malaysia (TOTMMY$), Philippines (TOTMPH$), Singapore (TOTMSG$),

and Thailand (TOTMTH$).12 Our sample period begins on Wednesday 4/9/1990 and ends on

Wednesday 4/22/2002.

Daily returns, rt, are calculated as log price relatives, rt ≡ 100 × log(It/It−1), where It denotes

the level of an index as of the end of day t.13 Prior to forming windows, the time series of daily

return observations on a particular index are demeaned over the entire sample period. Subsequently,
12All data are reported in U.S. dollars. Our conclusions are not altered if these data are converted into local currencies.
13There are no weekend observations and Datastream does record observations on holidays as simply that index level
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we group these data over each Wednesday to Wednesday time period to form windows each of

which contain k = 5 demeaned daily returns corresponding to Thursday, Friday, Monday, Tuesday,

and Wednesday observations. As a result, for each of our sampled market indices, we have m = 629

sequential and non-overlapping intervals of data from which to calculate sample variances and sample

correlations.

Figure 1 displays the estimated log variances of the sampled South East Asian country indices. To

make any patterns inherent in these data more discernable, we present the raw estimates themselves

as well as their exponentially smoothed counterparts. The estimated Fisher transformed correlations,

raw and smoothed, of the Thai returns with the returns of the other South East Asian countries are

presented in Figure 2.14

Before smoothing, we see that the Fisher transformed correlations are far noisier than the log vari-

ances. However, after smoothing, a shift in the log variances as well as the correlations is discernable

around the 1997 South East Asian crisis. In particular, the smoothed volatilities increase subsequent

to the crisis and while the correlations between these countries appear to fall between 1994 and 1996,

they increase dramatically around 1997. Taken together, Figures 1 and 2 suggest that log volatilities

and correlations are not constant but rather are time varying.

Table 1 provides summary statistics of these estimated covariance measures. From Panel A emerges

a picture of changing yet persistent volatility. Among our sampled South East Asian countries, es-

timated log variances are highest, on average, in Thailand, and are the least stable, as measured by

their standard deviations, in Indonesia. With reference to their corresponding sample skewness and

kurtosis, estimated log variances are close to being normally distributed for the sampled countries

except for Indonesia and Malaysia. Evidence of time series dependence in these estimated log vari-

ances can be seen in the pattern of their sample auto-correlations which do not approach zero even

at a lag length of τ = 8. In addition, the augmented Dickey-Fuller (ADF ) statistics convincingly

reject that these estimated series follow a random walk.

prevailing as of the end of the previous day on which trading did occur. We do not delete these observations in light

of the infrequency of holidays and the fact that specific holidays may vary across countries. As a result, this gives five

daily observations on the level of a particular index per week.
14For comparison purposes, we uses a smoothing parameter of λ = 0.93 throughout.
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By comparison, we see little evidence of persistence in the pattern of sample auto-correlations of

the Fisher transformed correlation estimates in Panel B of Table 1. The ADF statistics also reject

that these series follow a random walk. Of course, the true underlying correlations may indeed be

persistent, but any noise would significantly reduce our ability to statistically detect persistence in

their estimated counterparts. The pair-wise correlation between Thailand and Singapore returns is

highest, on average, amongst the sampled South East Asian countries while the correlation between

Thailand and Indonesia is lowest, on average.

4 Empirical Results

Specifying when the South East Asian crisis both commenced and concluded, our empirical frame-

work investigates whether a shift in mean population covariances occurred over this time period

relative to the mean population covariances characterizing the remaining sampled data. Many, for

example, Chakrabarti and Roll (2002), have dated the beginning of the South East Asian crisis as

the first week of July 1997 with the devaluation of the Thai bhat, that is, week 378 in our sample.

Unfortunately, there is no consensus as to the precise date when it concluded. Of course, there is

also the possibility that the crisis may have commenced earlier than July 1997.15

To fix matters, we assume that the South East Asian crisis did indeed commence during the first week

of July 1997 but we consider a number of alternative dates as to when it concluded. In particular,

we fit our model assuming that the crisis concluded one year later, that is, week 429 of our sample

period, two years later, week 481, and finally assuming that the crisis concluded three years later,

week 533. Fitting the model sequentially over these lengthening contagion horizons allows us to

better understand, at least in an ad hoc fashion, how covariances changed subsequent to July 1997.

As noted earlier, we assume that Thailand was “ground zero” for the South East Asian crisis and

our estimation strategy is to sequentially pair Thai returns with the returns to each of the other

sampled South East Asian countries. By doing so, we can discern if there are any differences across
15As noted by Kaminsky and Schmukler (1999), the Thai bhat was under pressure from July 1996 onwards with the

collapse of the Bangkok Bank of Commerce and injections of liquidity by the Bank of Thailand to support the financial

system.
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countries in how the crisis propagated. The nature of these differences will provide us with a better

understanding of contagion. All of our results are tabulated in Table 2, Panels A through E. Details

on the implementation of our estimation methodology are summarized in the Appendix.

As a preliminary, we begin by investigating whether the measurement errors surrounding the time-

varying log volatilities and the correlation between the respective returns are themselves correlated.

For each pair of returns and for every contagion horizon, we fit the model with the H matrix

unrestricted and the H matrix restricted to be diagonal. Under the null hypothesis that these

measurement errors are uncorrelated (that is, the H matrix is diagonal), twice the resultant log

likelihood ratio statistic, LR1, is asymptotically χ2 distributed with three degrees of freedom. Notice

that in almost every case we can reject this null hypothesis at the 10% significance level or better.

Measured volatilities and correlations are indeed correlated even after taking their stochastic nature

into account. Clearly, the model with a diagonal H matrix is misspecified and may result in erroneous

inferences regarding contagion.

Assuming an unrestricted H matrix, we next fit the model with and without a shift in mean popula-

tion covariances over the posited contagion horizon. Under the null hypothesis that there is no such

shift, twice the resultant log likelihood ratio statistic, LR2, is again asymptotically χ2 distributed

with three degrees of freedom. In almost every case we can reject this null hypothesis at the 10%

significance level or better.

We can also construct this log likelihood ratio statistic under the assumption that the H matrix is

diagonal, that is, ignoring the fact that measured volatilities and correlations are correlated, allowing

us to investigate the effects of this misspecification on inferences drawn regarding contagion. Notice

that in this case the corresponding χ2 statistics, LR3, tend to be larger and so we more easily reject

the null hypothesis of no mean covariance change under this misspecification. For example, in the

case of Thailand versus Singapore, at the contagion horizons concluding at months 429 and 481,

respectively, assuming a diagonal H matrix gives corresponding χ2 statistics of 4.43 and 11.76, while

the corresponding χ2 statistics are 1.92 and 3.92 when the H matrix is unrestricted. If we erroneously

assume that measurement errors are uncorrelated, we would reject the null hypothesis of no shift in

mean population covariances over the contagion horizon through month 481 when no such evidence
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obtains under the properly specified model.

By being more likely to conclude that mean population covariances have shifted implies that we may

falsely provide evidence of contagion when the correlated nature of the measurement errors is ignored.

This conclusion emphasizes the need to incorporate the correlated nature of measured variances and

measured correlations when investigating contagion. Recall that Forbes and Rigobon rely on a

model where covariances are fixed except potentially at a single change point and they recognize the

correlated nature of measurement errors surrounding this constant mean. We, by contrast, explicitly

account for correlated measurement errors surrounding a random mean, the randomness reflecting

the stochastic nature of covariances.

While our χ2 test provides reliable evidence of a joint shift in mean population covariances over

the posited contagion horizons, it does not tell us whether this reflects a shift in either of the mean

volatilities or a shift in the mean correlation between returns or both. To do so, we next examine the

statistical significance surrounding the shifts in the means of the individual covariance parameters,

∇d1, ∇d2, and ∇d3. In particular, the parameter ∇d1 measures the shift in the log volatility of Thai

returns over a given contagion horizon. The parameter ∇d2 measures the shift in the log volatility of

the other sampled South East Asian returns paired with Thai returns while ∇d3 measures the shift in

the correlation between these returns. Also, as we lengthen the contagion horizon, from concluding

at month 429 at one extreme to concluding at month 533 at the other extreme, we can investigate

whether the shifts in the individual covariance parameters are short- or long-lived.

The ∇d1 estimates provided in the different Panels of Table 2 simply give alternative estimates of this

shift gotten by pairing Thai returns with a different South East Asian country’s returns. Regardless

of which of our sampled South East Asian returns we pair with Thai returns, Table 2 provides reliable

evidence throughout that Thai log volatility shifts upward post-July 1997. Furthermore, this upward

shift is evident at all contagion horizons even the longest suggesting that the South East Asian crisis

brought about a permanent increase in Thai log volatility.

Similarly, the parameters ∇d2 and ∇d3 measure shifts, if any, in the log volatilities of the other

sampled South East Asian returns and their correlations with Thai returns, respectively. For example,

in the case of Indonesia and the Philippines, Panels B and D of Table 2, we clearly see that the log
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volatilities as well as the correlations of these returns with Thai returns shifted dramatically upward

in the post-July 1997 sample period. These shifts are evident at all horizons and so the reaction

of the Indonesian and the Philippine markets to the South East Asian crisis is long-lived. In other

words, if contagion is measured by an upward shift in correlations, we see clear evidence of such an

event in the case of Indonesia and the Philippines. By contrast, the behavior of Hong Kong and

Singapore volatilities and correlations, Panels A and E of Table 2, is quite different. While there

is evidence of Singapore log volatilities increasing throughout the post-July 1997 sample period, in

neither case is a shift in correlations statistically evident. That is, consistent with results of Forbes

and Rigobon, there is no evidence of contagion between Thailand versus Hong Kong and Singapore.

Finally, from Panel C of Table 2 we see that the log volatility of Malaysian returns and the correlation

of Malaysian and Thai returns initially increase at the outset of the South East Asian crisis, but

these shifts are short-lived as these individual covariance parameters are soon back at their pre-crisis

levels.

4.1 Discussion

Our empirical results are consistent with Kaminsky, Reinhart, and Végh’s (2003)16 conclusion that

Indonesia, Malaysia, and the Philippines “were hit hardest” by the South East Asian crisis precipi-

tated by events in Thailand in July 1997. Not only did the volatility of their stock returns, especially

in the cases of Indonesia and the Philippines, increase substantially in the post-July 1997 sample

period, contagion, that is, a substantial upward shift in the pairwise correlation of their returns with

Thai returns, is also evident. Consistent with Kaminsky, Reinhart, and Végh (2003), “(f)inancial

markets in Singapore and Hong Kong also experienced some turbulence”. The volatility of their

returns, especially in the case of Singapore, do increase substantially in the post-July 1997 sample

period. However, we see no evidence of an increase in pairwise return correlations or contagion

between Thailand and either Singapore or Hong Kong.

Having reliable evidence of contagion between Thailand and Indonesia, Malaysia, and the Philippines,

but not Hong Kong and Singapore, suggests that differences between their respective economies or
16See Table 1 of Kaminsky, Reinhart, and Végh (2003).
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financial markets may provide clues as to why contagion afflicted some but not all of our sampled

South East Asian countries. Firstly, it is unlikely that trade linkages are the source of this contagion.17

As argued by Baig and Goldfajn (2000), Park and Song (2001) and others, the trade linkages between

Thailand and Indonesia, Malaysia, and the Philippines are not striking nor do these countries share

very similar third country export profiles. However, quite distinct from Hong Kong and Singapore,

each of Thailand, Indonesia, Malaysia, and, to a lesser extent, the Philippines, depended heavily

on Japanese commercial bank lending on the eve of the South East Asian crisis (Kaminsky and

Reinhart (2000)).18 The presence of a significant common creditor across these countries is the basis

of the common bank creditor channel for the transmission of contagion. That is, different countries

are linked by the fact that a common international bank lends to these countries. Confronted by

an increase in non performing loans in one country, the bank may reduce its exposure to loans in

all countries, thereby transmitting the financial crisis. Our empirical results are consistent with

Kaminsky and Reinhart’s (2000) conclusion that these common financial linkages can better explain

the observed patterns of contagion.

While Japanese bank lending was not particularly important in the case of Hong Kong or Singapore

where we see no evidence of contagion, portfolio investors, especially mutual fund investors, played

an important role in these two countries. In fact, Kaminsky, Lyons and Schmukler (2002) document

that in the two quarters following July 1997, Hong Kong and Singapore suffered the largest mutual

fund withdrawals of our sampled South East Asian countries, seven and twelve percent, respectively,

of their preceeding quarter holdings. These large mutual fund outflows were prompted, in part,

because the Singapore and Hong Kong markets are the most liquid and the most unrestricted of

South East Asian markets19. Our empirical results suggest that while the crisis did result in an

increase in the volatility of Hong Kong and Singapore stock returns, the flexibility and depth of
17Eichengreen, Rose, and Wyplosz (1996) argue that trade linkages can result in contagion as currency devaluation

in one country reduces competitiveness in partner countries, prompting devaluations to restore this competitiveness.
18As tabulated by Kaminsky and Reinhart (2000), fifty-four percent of Thai liabilities were to Japanese banks as of

December 1996. The comparable figures were thirty-nine percent and thirty-seven percent for Indonesia and Malaysia.

By contrast, only twelve percent of Philippines liabilities were to Japanese banks. However, American banks accounted

for nearly thirty percent of Philippine liabilities on the eve of the crisis.
19By contrast, for example, in September 1997 the Malaysian government banned short selling on equity markets

and imposed restrictions on forward sales of the ringgit.
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these markets together with an absence of restrictive government intervention prevented a statistical

discernable increase in the correlation of their returns with Thai returns where mutual funds holdings

were minimal.

5 Conclusions

Defining contagion as a significant change in cross-market linkages in response to a shock or crisis

requires a realistic modeling of these linkages outside of the crisis period. In particular, in the absence

of a crisis, it is well known that security returns exhibit stochastic volatility and the correlations

between returns are also stochastic. Prior investigations of contagion, unfortunately, have not taken

this stochastic nature of covariance into account but rather have relied on static models in which a

shift in covariance is permitted only around a particular crisis.

This paper more fully assesses changes in cross-market linkages by explicitly recognizing the stochastic

interdependence between markets. We measure contagion and volatility spillover relative to this

stochastic interdependence. Concentrating on the South East Asian crisis of July 1997, we find clear

evidence of volatility spillover in the equity returns of our sampled countries of Hong Kong, Indonesia,

Malaysia, the Philippines, Singapore and Thailand. By contrast, the evidence for contagion is

country-dependent. In particular, we see reliable evidence of contagion between Thailand and the

lesser developed nations of Indonesia, Malaysia, and the Philippines, but not between Thailand and

the more developed nations of Hong Kong and Singapore.
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Appendix

Implementation of the Estimation Methodology

All computations are performed in GAUSS. Stable and reliable results are obtained using the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm after an appropriate starting value was se-

lected. Each pair of countries generates three times series of observations representing two sample

log volatilities and one Fisher-transformed sample correlation.

1. We first fit univariate linear state space models for each of the three series. This is equivalent

to fitting the general multivariate model under the restriction that T, Q, and H are diagonal.

It is straightforward to implement this estimation.

2. The first step for the multivariate approach was to implement the EM algorithm for 150 iter-

ations using the estimated coefficients from the above restricted model as starting values. See

Shumway and Stoffer (1982) for details. This method monotonically increases the likelihood

function and works well initially from a variety of starting values. Significantly, Q and H are

necessarily positive definite using this technique. Unfortunately the method becomes much

slower when nearing the optimum.

3. For the second step we employed the resultant EM estimates as starting values and then

implemented the BFGS algorithm. We worked with the Choleski factorization of H and Q

to ensure positive definiteness. Experiments revealed that this two-stage approach provided

stable results. We obtain standard errors via the outer product method. The resultant standard

errors are useful for implementing single restriction t-tests on the parameters. We also ran a

number of likelihood ratio statistics based on various restrictions of the model. As a test of the

reliability of the method we compared likelihood ratio statistics with one restriction p-values

with p-values associated with the individual t-statistics. The matches are good.
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Table 1: Summary Statistics

This Table provides summary statistics for the log variances of the returns of the Hong Kong, Indonesia,
Malaysia, Philippines, Singapore, and Thailand markets (Panel A) as well as the Fisher transformed correla-
tions of the Thailand returns with Hong Kong, Indonesia, Malaysia, Philippines, and Singapore returns (Panel
B). Jq-Bera denotes the Jarque-Bera statistic for testing the null hypothesis of normality, AC(n) denotes the
autocorrelation of order n and ADF denotes the Augmented Dickey Fuller test statistic for testing the null
hypothesis of a unit root, corrected for serial correlation of order 8. Critical values for the ADF tests are −3.44
(1 percent), −2.87 (5 percent), and −2.57 (10 percent). Our sample period begins on Wednesday 4/9/1990
and ends on Wednesday 4/22/2002.

Panel A: Log Variances

Country Hong Kong Indonesia Malaysia Philippines Singapore Thailand
Mean 0.368 0.695 0.118 0.304 -0.159 0.808
Median 0.371 0.594 -0.035 0.417 -0.174 0.825
Maximum 4.419 7.010 5.610 4.428 4.055 4.706
Minimum -3.652 -4.278 -3.512 -3.725 -4.253 -2.869
Std. Deviation 1.111 1.582 1.368 1.286 1.152 1.289
Skewness 0.075 0.377 0.614 -0.136 0.105 0.032
Kurtosis 3.410 3.627 3.833 3.140 3.298 2.869
Jq-Bera 4.989 25.181 57.754 2.459 3.489 0.555
(p-value) (8.3%) (<1%) (<1%) (29.2%) (17.5%) (75.7%)
AC (1) 0.442 0.576 0.545 0.443 0.521 0.484
AC (2) 0.391 0.576 0.504 0.345 0.426 0.429
AC (3) 0.353 0.485 0.482 0.321 0.406 0.387
AC (4) 0.330 0.482 0.461 0.270 0.361 0.313
AC (8) 0.342 0.451 0.407 0.267 0.319 0.362
AC (13) 0.235 0.402 0.376 0.227 0.263 0.303
AC (26) 0.167 0.289 0.285 0.126 0.246 0.270
ADF -4.068 -3.117 -3.565 -4.616 -4.406 -3.835

Panel B: Fisher Transformed Correlations

Thailand vs Hong Kong Indonesia Malaysia Philippines Singapore
Mean 0.358 0.255 0.370 0.258 0.395
Median 0.358 0.227 0.310 0.267 0.361
Maximum 2.937 2.609 2.905 2.687 2.469
Minimum -1.432 -1.575 -1.631 -1.909 -1.427
Std. Deviation 0.661 0.610 0.650 0.658 0.627
Skewness 0.252 0.195 0.135 0.074 0.184
Kurtosis 3.478 3.493 3.349 3.612 3.057
Jq-Bera 12.669 10.338 5.093 10.394 3.619
(p-value) (<1%) (<1%) (7.8%) (<1%) (16.4%)
AC (1) 0.184 0.071 0.126 0.106 0.160
AC (2) 0.133 0.095 0.083 0.135 0.087
AC (3) 0.136 0.139 0.066 0.130 0.103
AC (4) 0.105 0.119 0.037 0.095 0.031
AC (8) 0.122 0.164 0.063 0.108 0.027
AC (13) 0.056 0.106 0.019 0.055 0.038
AC (26) 0.057 0.019 0.010 0.071 0.020
ADF -5.958 -5.740 -6.666 -5.748 -6.834
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Table 2: Test Results

This Table summarizes the tests results obtained by fitting our state-space model to Thai returns paired with
the returns of Hong Kong (Panel A), Indonesia (Panel B), Malaysia (Panel C), Philippines (Panel D), and
Singapore (Panel E). In each case, the South East Asian crisis is assumed to commence during the first week
of July 1997, that is, week 378 of our sample and to conclude either one year later, window=[378,429], two
years later, window=[378,481], or three years later, window=[378,533]. The log-likelihood of the resultant
model is denoted by L. The likelihood ratio statistic LR1 tests whether the measurement error covariance
matrix H is diagonal, the likelihood ratio statistic LR2 tests whether there is a shift in any of the covariance
parameters over the designated window under the full model, while the likelihood ratio statistic LR3 tests
whether there is a shift in any of the covariance parameters over the designated window under the restriction
that the measurement error covariance matrix H is diagonal. Here ∗ ∗ ∗ indicates significance at the 1% level,
∗∗ indicates significance at the 5% level, and ∗ indicates significance at the 10% level. The parameter ∇d1
measures the shift in the log volatility of Thai returns over a given window, the parameter ∇d2 measures the
shift in the log volatility of the other sampled South East Asian returns paired with Thai returns while ∇d3
measures the shift in the correlation between these returns. Asymptotic standard errors of these estimates are
also provided. Our sample period begins on Wednesday 4/9/1990 and ends on Wednesday 4/22/2002.

A: Thailand vs Hong Kong

window=[378,429] window=[378,481] window=[378,533]
estimate std. error estimate std. error estimate std. error

∇d1 1.13665 0.43835 1.27243 0.27013 1.28203 0.21725
∇d2 -0.08147 0.36859 0.30332 0.27095 0.59530 0.25074
∇d3 0.27516 0.16332 0.28905 0.12535 0.17281 0.12133
L -2310.81923 -2305.72735 -2306.27347
LR1 18.6248*** 10.3086** 12.13448***
LR2 8.89698** 19.08074*** 17.9885***
LR3 11.3708*** 29.8708*** 26.95266***

B: Thailand vs Indonesia

window=[378,429] window=[378,481] window=[378,533]
estimate std. error estimate std. error estimate std. error

∇d1 1.18859 0.42026 1.16133 0.29435 1.16860 0.23753
∇d2 1.54759 0.45402 1.21680 0.38832 1.36032 0.29877
∇d3 0.37462 0.11204 0.38166 0.10418 0.29811 0.09995
L -2422.98231 -2420.06298 -2421.72714
LR1 6.14171 7.21698* 8.03**
LR2 13.0195*** 18.85812*** 15.5928***
LR3 22.6436*** 27.6824*** 23.54106***

C: Thailand vs Malaysia

window=[378,429] window=[378,481] window=[378,533]
estimate std. error estimate std. error estimate std. error

∇d1 0.37201 0.46202 1.11832 0.25186 1.25885 0.26494
∇d2 1.12665 0.43826 1.90310 0.18841 1.30187 0.22530
∇d3 0.39178 0.12932 0.26674 0.09158 -0.05285 0.09298
L -2397.19873 -2393.27945 -2393.5481
LR1 13.0875*** 20.94554*** 10.88982**
LR2 7.99602** 15.83458*** 15.29728***
LR3 5.56034 5.54086 15.05928***
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Table 2 (continued)

D: Thailand vs Philippines

window=[378,429] window=[378,481] window=[378,533]
estimate std. error estimate std. error estimate std. error

∇d1 1.46649 0.38845 1.58128 0.24042 1.52132 0.21318
∇d2 1.27302 0.29140 1.50279 0.20677 1.00326 0.24327
∇d3 0.31299 0.13704 0.25858 0.08308 0.34840 0.07227
L -2452.45669 -2444.18546 -2440.34855
LR1 10.20708** 7.33878* 7.05974*
LR2 13.54914*** 30.0916*** 37.76542***
LR3 14.57256*** 33.983322*** 41.93618***

E: Thailand vs Singapore

window=[378,429] window=[378,481] window=[378,533]
estimate std. error estimate std. error estimate std. error

∇d1 0.68101 0.57657 0.97693 0.43370 1.11783 0.30166
∇d2 0.55369 0.48559 0.87145 0.35717 1.07644 0.23732
∇d3 0.08797 0.13224 0.07701 0.11652 0.14654 0.08686
L -2259.9259 -2258.91924 -2255.56266
LR1 8.5603** 3.24684 1.25458
LR2 1.91516 3.92848 10.64164**
LR3 4.4288 11.75558*** 20.461***

22



6 References

1. Andersen, T., Bollerslev, T., Diebold, F. X., and Ebens, H., (2001), “The Distribution of

Realized Stock Return Volatility”, Journal of Financial Economics, Vol. 61, pp. 43-76.

2. Anderson, T. W., 1984, An Introduction to Multivariate Statistical Analysis, (Second Edition),

Wiley, New York, N. Y.

3. Baig, T., and Goldfajn, I., 1999, “Financial Market Contagion in the Asian Crisis”, IMF Staff

Papers, Vol. 46, pp. 167-195.

4. Bartlett, M. S., and Kendall, D. G., 1946,“The Statistical Analysis of Variance-Heterogeneity

and the Logarithmic Transform”, Supplement to the Journal of the Royal Statistical Society,

Vol. 8, pp. 128-138.

5. Campbell, J. Y., Lo, A. W., MacKinlay, A. C., 1997, The Econometrics of Financial Markets,

Princeton University Press, Princeton, N. J.

6. Candelon,B., Hecq, A., and Verschoor, W. F. C., 2005 “Measuring common cyclical features

during financial turmoil: Evidence of interdependence not contagion”, Journal of International

Money and Finance, Vol. 24, pp. 1317 - 1334.

7. Chakrabarti, R., and Roll, R., 2002, “East Asia and Europe during the 1997 Asian Collapse:

A Clinical Study of a Financial Crisis”, Journal of Financial Markets, Vol. 5, pp. 1-30.

8. Corsetti, G., Pericoli, M., and Sbracia, M., 2005, “’Some contagion, some interdependence’:

More pitfalls in tests of financial contagion”, Journal of International Money and Finance, Vol.

24, pp. 1177 - 1199.

9. Eichengreen, B., Rose, A., and Wyplosz, C., 1996, “Contagious Currency Crises”, NBER

Working Paper Number W5681.

10. Forbes, K., and Rigobon, R. , 2002, “No Contagion, Only Interdependence: Measuring Stock

Market Comovements”, Journal of Finance, pp. 2223-2261.

11. Johnson, N. H., Kotz, S., and Balakrishnan, N., 1995, Continuous Univariate Distributions,(Second

Edition, Volume 2), Wiley, New York, N. Y.

23



12. Harvey, A. C., 1990, Forecasting, Structural Time Series Models and the Kalman Filter, Cam-

bridge University Press, Cambridge, U. K.

13. Hotelling H., 1953,“New Light on the Correlation Coefficient and its Transform”, Journal of

the Royal Statistical Society, Series B, Vol. 15, pp. 193-225.

14. Kaminsky, G. L., Lyons, R. K., and Schmukler, S., 2001, “Mutual Fund Investment in Emerging

Markets: An Overview”, World Bank Economic Review, Vol. 15, pp. 315-340.

15. Kaminsky, G. L., and Reinhart, C. M., 2000, “On Crises, Contagion, and Confusion”, Journal

of International Economics, Vol. 51, pp. 145-168.

16. Kaminsky, G. L., Reinhart, C. M., and Végh, C. A., 2003, “The Unholy Trinity of Financial

Contagion”, Journal of Economic Perspectives, Vol. 17, pp. 51-74.

17. Kaminsky, G. L., and Schmukler, S., 1999, “What Triggers Market Jitters? A Chronicle of the

Asian Crisis”, Journal of International Money and Finance, Vol. 18, pp. 537-560.

18. Kim, S., Shephard, N., and Chib, S., 1998, “Stochastic Volatility: Likelihood Inference and

Comparison with ARCH Models”, Review of Economic Studies, Vol. 65, pp. 361-394.

19. Loretan, M, and English R., 2000, “Evaluating ”Correlation Breakdown” During Periods of

Market Volatility”, Board of Governors of the Federal Reserve System, Working Paper

20. Lütkepohl, H., 1993, Introduction to Multiple Time Series Analysis, (Second Edition), Springer-

Verlag, Berlin.

21. Mahieu, R., and Schotman, P., 1998, “An Empirical Application of Stochastic Volatility Mod-

els”, Journal of Applied Econometrics, Vol. 13, pp. 333-360.

22. Park, Y. C., and Song, C-Y, 2001, “Institutional Investors, Trade Linkage, Macroeconomic

Similarities, and Contagion of the Thai Crisis”, Journal of the Japanese and International

Economies, Vol. 15, pp. 199-224.

23. Solnik, B., Boucrelle, C., and Fur, Y. L., 1996, “International Market Correlation and Volatil-

ity”, Financial Analysts Journal, Vol. 52, pp. 17-34.

24



24. Winterbottom, A., 1979,“A Note on the Derivation of Fisher’s Transformation of the Correla-

tion Coefficient”, The American Statistician, Vol. 33, pp. 142-143.

25






