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ABSTRACT

This paper uses high frequency wholesale electricity spgoepmlata from Australia, Canada,
and the United States to estimate realized volatility amdftbquency of price spikes. 1 find

similar levels of realized volatility in Australia and NartAmerica, with estimates ranging
from 1,500% to 3,000%. | present evidence that nonparaenjeimp detection tests based on
the difference between realized variance and bipower tiamiare not reliable for electricity

prices. Because daily electricity prices are averagemditnodels to data sampled at the
daily frequency can never lead to a “correct” specificationthe underlying data generating

mechanism.
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A thorough understanding of volatility is crucial for mamgpics of interest to financial economists
including derivative pricing, corporate risk managemenmdrket efficiency, and many others. Recent de-
velopments in the financial econometrics literature, comdiwith the availability of intradaily data, have
led to much better estimates of volatility. Volatility estites based on high frequency data, so-called re-
alized volatilities, improve our understanding of pricenf@tion. One of the most promising uses of high

frequency data is to discern jumps in otherwise continuoice paths.

Electricity is not yet storable in economically meaningfulantities and as a result electricity prices are
extremely volatile. Supply and demand shocks are transthiittto prices almost instantaneously - literally
at the speed of light - resulting in the price spikes endemieléctricity markets, episodes during which
the price can increase by a factor of 100 or more, followed bglatively quick return to normal levels.
Price spikes make wholesale electricity markets very rigkyront page article (Smith (2008)) in the 17
July 2008 edition ofThe Wall Street Journaleports that five retail electricity companies in Texasefil
when wholesale electricity prices spiked up to $4000. Taipicholesale electricity prices are $40 to $100.
In order for firms operating in the industry to effectively mage such risk, it is necessary to have a good

understanding price spikes and volatility.

Given the importance of price spikes in electricity marketsnbined with the advent of high frequency
electricity price data, it seems natural to apply realizethtility techniques to electricity prices. One
particularly attractive feature of realized volatility gthe associated jump detection tests is that they are
nonparametric. The correct specification for modellingcleity prices is still an open question. One
goal of this paper is to shed light on the behavior of eleityriprices without resorting to parametric

specifications for the underlying data generating process.

| calculate realized volatility and estimate the frequeatyprice spikes for eight wholesale electricity
markets - five in Australia, one in Canada, and two in the Wn8&tes. The Australian data is observed at

the half-hourly frequency; the North American data is obedrat the hourly frequency.
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I make several contributions. First, the estimates of dalctricity price volatility reported in this
paper, expressed in annualized standard deviation formgerrom 1,500% to 3,000%. These estimates
are much larger than previous estimates reported in thratlite2, which range from approximately 300% to
900%. Further, previous results suggest that Australiactitity markets are more volatile than markets
elsewhere. Using high frequency data, | show that elettriviarkets in North America are, on average,
just as volatile as markets in Australia. The reason forahssemingly contradictory results lies in the
observation frequency of the data used to make the estimBtesious results in the literature are based
on daily prices, while the results presented here are basadt@daily prices. Unlike, e.g., daily stock
prices which are sampled once per day, available dailyradgtprices are averages of intradaily prices.

Averaging pricescrossthe day necessarily attenuates price variatisitein the day.

In order to reconcile previous results with those presehte | calculate two estimates of monthly
volatility. First, | create average daily prices from irdeely data and calculate monthly volatility as the
standard deviation of daily (log) price changes, which irtédow frequency volatility. The low frequency
volatility estimates are similar to estimates reportechim lfterature. Second, | calculate monthly realized
volatility, which I term high frequency volatility. Not sprisingly, the estimates of high frequency volatility
are much greater than the corresponding low frequency atsn Low frequency and high frequency

estimates are based on exactly the same raw data.

Ranking the volatility of markets based upon low frequenahatility, | find that Australian markets are
more volatile than North American markets. Based upon highuency volatility, | find that markets in
Australia and North America display similar levels of viliat. Because price spikes in Australian markets
tend to be larger than price spikes in North American marfeting to lower price caps in North America),
the dilutive effect of averaging on volatility is less pramzed in Australian markets. This explains why

previous authors, using daily data, have concluded thatr&lien electricity markets are more volatile.

Next | show that the jump detection techniques developedigerin financial markets and based on

high frequency data are less effective in electricity merk&€here are two primary reasons. The first reason
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is because jumps in high frequency electricity prices itadly are reversed within a few hours. It is the

upward jump and the reversal together that define the ppde

In the case of high frequency stock price data, microstrachoise induces spurious negative serial
correlation in returns. Serial correlation causes the jdetpction test statistic to be biased downward, i.e.,
to incorrectly classify some days as non-jump days wherciregump occurred. Andersen, Bollerslev, and
Diebold (2007) show that offsetting, or lagging, returnghie calculation of the jump detection statistic
serves to break the negative autocorrelation. Reversadentricity prices also induce negative serial
correlation in returns. Though the cause is different thenrhicrostructure noise in equity prices, the
effect is the same - the jump detection statistic undertgjpe null of no jumps. | show that, in the case of

electricity prices, it is crucial to increase the lag lengyhseveral periods in order to account for reversals.

The second, and more troubling, reason that jump detectisedbon high frequency electricity price
data does not work well is because electricity prices carpjumre than once in a single day. The jump
detection methodology is based on the assumption that jmaps are rare and thus there is at most one

jump per day. | present evidence that multiple jumps cantfo®jump detection test.

Many authors have pointed out that, because electricitijeastézely not storable, it is crucial to develop
a good model for spot electricity prices. A spot price modekiquired for pricing electricity derivatives,
both real and financial. Much of the existing electricitgtature is devoted to determining which stochastic
model best fits electricity prices. Such efforts typicalglyron mean-reverting, jump-diffusion, and/or
regime-switching models common from the modelling of egsijtforeign exchange, and interest rates.
Almost all of these model fitting exercises use data sampledily (or lower) frequencies. Such models
are important for valuing options that settle against thity deerage price, such as baseload power plants
and many power purchase agreements. However, daily modmismacessarily undervalue options which

settle against intradaily prices.

23pecifically, models of daily electricity prices must undsue flexible technologies such as gas-fired combustidrirtes.



It is well known that the distribution of average prices éiff from the distribution of the prices from
which the average is takQ‘n.Because daily electricity prices are averages, fitting rsotie data sam-
pled at the daily frequency can never lead to a “correct” gjgpation for the underlying data generating

mechanism. This is an important point that has not been esiggthin the literature.

The layout of this paper is as follows. Section | providegerditure review. Section Il describes and
summarizes the data. Section Il reviews the theory anditzlon of realized volatility and jump detection
based thereupon, and discusses its application to the talsewicity prices. Section IV presents estimates
of realized electricity volatility and Section V presenssimates for jump frequencies. Section VI presents
realized volatility and jump frequency estimates for twtealative datasets, hourly Australian data and
five-minute New England data. Section VII considers theapifassociated with fitting models of spot
electricity to daily average prices. Section VIl summasgzhe results and gives directions for further

research.

|. Literature Review

The nascent financial economics literature about elettiizices is growing rapidly owing to (i) deregula-
tion of electricity markets worldwide, (ii) the unique befa of electricity prices, and (iii) the increasing

availability of price data. In this section | review the nedat literature on electricity prices.

Deng (2000) is one of the first widely-cited papers in theditere in which the author attempts to model
electricity prices using stochastic models. Deng (2000¢sen affine jump-diﬁusior@to model spot
electricity prices. He incorporates regime switching lestw “abnormal” and “normal” states to account
for price spikes. In later work, Deng (2005) uses real optimethods to value power plants in the presence

of jumpy electricity prices.

3|n a separate context Nielsen and Sandmann (2003) writef¥ie problem ... with the arithmetic average ... is that &ve |
of the arithmetic average is unknown.”
4See Duffie, Pan, and Singleton (2000).



Escribano, Pena, and Villaplana (2002) study daily eleityriprices for six different markets. They
document that electricity prices are highly variable, mearerting, right-skewed, and severely leptokurtic,

and they also document price spikes.

Atkins and Chen (2002) study electricity prices in the AthgiCanada market. They, too, document
all the usual properties - right-skewed prices, leptokuptice and return distributions, and price spikes.
Atkins and Chen (2002) suggest that the realized volagifigroach of Andersen, Bollerslev, Diebold, and
Ebens (2001) might be of use in characterizing the stoahpsiicess responsible for generating electricity

prices.

Guthrie and Videbeck (2002) and Guthrie and Videbeck (2@8@nine high frequency spot price data
from New Zealand. They treat electricity delivered at difg times of the day as separate commaodities.
They point out that an accurate model of electricity spatgsiis necessary for the purposes of derivative
valuation and real options analysis often applied to povemntp. They emphasize the need for intradaily

data.

Goto and Karolyi (2004) study electricity price volatility markets in Australia, the Nordic Power
Exchange (NORDPOOL), and the United States. They docurhahtetectricity price returns have near
zero mean, high volatility, and large excess kurtosis. Eaféer including jumps and ARCH effects, the
residuals from their model are still autocorrelated, legvip.22), “... important unexplained systematic

components ...".

Hadsell, Marathe, and Shawky (2004) study electricity tiitha by fitting ARCH-type models to elec-
tricity prices for five US markets. In their words (p.24), “derstanding the volatility dynamics of elec-
tricity markets is important in evaluating the deregulatexperience, in forecasting future spot prices, and
in pricing electricity futures and other energy derivasiVve They find that the persistence of electricity
volatility has decreased over time and speculate that thghtrbe due to learning effects in relatively new

markets.



Cartea and Figueroa (2005) develop a model for electrigitt prices incorporating mean reversion,
seasonality and, discontinuous jumps. They calibrate thaetusing the daily average of intradaily spot

prices from the UK and then develop closed-form expressionthe forward price.

Knittel and Roberts (2005) analyze spot electricity pritesn California and subsequently fit several
models common in the finance literature. They document hagiability, positive skewness, and an inverse
leverage effect, which they attribute to convex supply earfmarginal costQ.T hey point out that negative
prices, while unique to electricity markets and quite npaeé of little importance in pricing of financial

securities.

Higgs and Worthington (2005) use high frequency data froratéailian markets to model volatility us-
ing ARCH-type models. Consistent with previous work, thefihat electricity price return distributions
have essentially zero mean, high volatility, and fat tdilgerestingly, they proxy for information arrivals
using demand volume. To my knowledge, theirs is the only papattempt to capture such an effect in

electricity markets.

Hlouskova, Kossmeier, Obersteiner, and Schnabl (2005lde\a real options model to value power
plants in the German market. They point out that real optinodels can be used in the electricity industry
to assess investment decisions and to analyze a firm’s portfophysical assets (e.g., power plants) and
financial assets (e.g., futures and options contracts).t Mgsortantly, they point out that in the presence
of a well-functioning spot market the decision to operat®aqr plant is independent from other assets in
the portfolio, both physical and financial. From p.300{He.spot market automatically splits a utility into
two separate firms: a power producer and a power marketidre aptimization problems relating to the

optimal exercise of contracts can be solved separately fhenoverall portfolio problem.”

Geman and Roncoroni (2006) use data from three markets ldrilted States to fit a mean-reverting,

jump-diffusion (in their words a “jump-reversion”) to dwilogarithmic electricity prices. They point out

5The leverage effect in equity markets refers to the asynicagtesponse of volatility to price changes. Prices andtilitly
are inversely related, but the volatility increase thatoagganies a price decrease is greater in magnitude than taglito
decrease that accompanies a price increase.



that nonstorability means that one cannot derive spot gtindamentals from forward prices because
the standard spot-forward relationship familiar in finaheharkets does not hold. They also point out
that the Pennsylvania-New Jersey-Maryland (PJM) markeigdehas functioned well and that the PIM

transmission system has been very efficient.

Mount, Ning, and Cai (2006) fit a stochastic regime-switghinodel to PJM electricity prices. They
suggest that price spikes are more common in Australiatrigliée markets because regulators in Australia
are less willing to “... modify the behavior of suppliers..Consistent with Ullrich (2008), they show that

the difference between available supply and contempotendemand is crucial in price formation.

Hambly, Howison, and Kluge (2007) develop a model for spetteicity prices with three separate
components - seasonality, an Ornstein-Uhlenbeck procespbt prices, and a mean-reverting jump pro-
cess. By separately modelling the O-U process and the juogeps, they can specify different speeds of

mean reversion for continuous price movements and jumps.

Huisman, Huurman, and Mahieu (2007) point out that, becdageahead electricity prices are deter-

mined simultaneuously for all hours of the next day, it isoimect to model these prices as a time series.

Zareipour, Bhattacharya, and Canizares (2007) studyrigiégtprice volatility in the Ontario market.
They conclude that the Ontario electricity market is onehaf inost volatile markets worldwide. One

potential reason is that Ontario has no day-ahead forwarlena

Perhaps the most sophisticated effort to model electrjmitges is in Pirrong and Jermakyan (2008).
These authors use hourly demand and fuel price as statdhesritor modelling the price of electricity.
Using data from PJM, Pirrong and Jermakyan (2008) find a fagunit risk premium in forward prices,

even in the very short-term.

An excellent recent paper by Karakatsani and Bunn (2008 kiak-hourly data from the UK market
to study price formation subsequent to market restruggunriviarch 2001. Karakatsani and Bunn (2008)

introduce a regime switching model for each half-hourlying period and show that fundamentals mat-



ter more during off-peak periods, while they find evidencestofitegic behaviour (market power) during

periods of high prices. They emphasize the need to go beyamatystatistical models of electricity prices.

Benth and Koekebakker (2008) model forward contracts evritin electricity. Benth and Koekebakker
(2008) provides a cautionary tale about the applicabilitstandard models used for equities and even

other commodities to the case of electricity.

Huisman (2008) fits several regime switching models to @eday-ahead electricity prices from the
Dutch APX market and finds that the inclusion of temperatra #orecasting variable improves the fit of

the model.

The work most closely related to this paper is Chan, GrayvandCampen (2008). These authors also
compute estimates of realized electricity price volatibind jump frequencies based on high frequency
data. Chan, Gray, and van Campen (2008) recognize thakeumig., equity prices, intradaily electricity
price changes are not mean zero, owing to distinct seatiesalcross the day and across the year. Hence,
they model the drift of the price process as mean-reveriimaprporating dummy variables to account for

seasonalities, and use the resulting estimates to demieans.e

This paper is different from Chan, Gray, and van Campen (RibO@nportant ways. First, | emphasize
the different information content of intradaily data vessiaily data. Second, while Chan, Gray, and van
Campen (2008) define return to be the first difference in peeels, | use the first difference in log prices.
Each approach has its advantages, but | choose to use |leg miorder to make my results comparable
to the finance literature. The conclusions of this paper agitgtively similar in either case. Third, |
compare the performance of four separate schemes to adooumiradaily patterns. Fourth, Chan, Gray,
and van Campen (2008) deal exclusively with Australiantalgty markets. | analyze data from markets
in Australia and North AmericJA.Fifth, | show that jump detection tests based on the diffeedmetween

realized variance and bipower variation require modifaratn the case of electricity prices.

5previous work based on low frequency data concludes thatalian electricity markets are more volatile than otherkets.
| find that volatility is similar across markets.



Il. Data

The data used in this study are publicly availhhigh frequency wholesale electricity spot prices from
eight markets - five in Australia and three in North AmerichgRustralian markets are New South Wales
(NSW), Queensland (QLD), South Australia (SA), the Snowyultains (SNOWY), and Victoria (VIC).

The Australian data cover the period January 1999 through 2Q08. For the Australian markets, the raw

data are half-hourly.

The North American markets are New England (NEISO), theegastub of Pennsylvania-New Jersey-
Maryland (PJM), and Ontario, Canada (ONT). The NEISO datacthe period May 1999 through Febru-
ary 2008. The PJM data cover the period June 2000 through M@y.2The ONT data cover the period

May 2002 through April 2008. For the North American markétg, raw data are hourly.

Electricity is produced and consumed all day every day, theslata include weekends and holidays,

and cover all hours (half-hours) of the day. | drop days tle@thmissing return observations.

Table 1 lists overall summary statistics for prices andrretpi.e., log prices differences. Price data
have units of dollars per megawatthour ($/MWh). The retwatacare in percent. While it is well known
that electricity prices can be less than or equal to zercathegprices render the concept of return poorly
defineo@ Low positive prices can also result in very large returnsalthiwhile likely to be classified as
jumps, are not economically important. | drop all hours fdnet the spot price is less than or equal $5.00.
| experimented with various values for the cutoff rangingnfr $0.00 to $10.00 with little effect on the

result

"For NEISO, www.iso-ne.com. For PJM, www.pjm.com and seedstaif and Wang (2004) for details. For ONT,
www.ieso.com and see Zareipour, Bhattacharya, and C&siZ2007) and Zareipour, Canizares, and Bhattacharya Y2607
details. For the Australian markets, www.nemmco.com.aliss® Higgs and Worthington (2005) and Higgs and Worthington
(2008) for details.

80ne of the advantages of defining return as the differenceide fevels as in Chan, Gray, and van Campen (2008), rather
than the log difference used here is that negative pricesecaal difficulty.

91 also drop 8-May-2000 in NEISO. This particular day saw fypspot prices reach $6,000, and thus induces large incsease
in spot price mean, standard deviation, skewness, anddksirt@rguably, any effort to determine jumps in electrigtices should
include such an extreme outlier, however, removal of this dawy has little effect on the estimates of realized votgtresented
in Table 2 and the estimates of jump frequencies given in€rabl



Table 1 confirms stylized facts reported in Escribano, Pand,Villaplana (2002), Atkins and Chen
(2002), Goto and Karolyi (2004), Knittel and Roberts (2Q@5&man and Roncoroni (2006), Karakatsani
and Bunn (2008), Higgs and Worthington (2008), and manyretHeroperties of electricity prices include
large standard deviations (relative to the mean), posg#tk@vness, severe leptokurtosis, and large posi-
tive outliers. Returns are near zero on average, have léagdard deviations (relative to the mean), are

approximately symmetrical, and display severe leptolsisto

Prices in Australian markets have higher standard dewistiare more positively skewed, and have
fatter tails than prices in North American markets. Retustridhutions are more similar across markets,

though return kurtosis is higher for the Australian markets

[ll. Realized Volatility and Jumps

Recent work in financial econometrics shows that realizddtity calculated from high frequency data
provides a superior estimate of true latent volatility tlemtimates based on daily (or lower) frequency
dat Realized volatility techniques also show great promisespasating continuous price movements
from discontinuous jumpsi Given the focus on price spikes in the electricity literatand the advent of

high frequency electricity price data, it seems naturaljolyathese techniques to electricity prices.

In this section | present a brief review of the theory andwalion of realized volatility and the jump
detection techniques developed by Barndorff-Nielsen dmpBard (2004b) and further refined by Huang

and Tauchen (2005). | focus on the implementation of theutations in the case of electricity prices.

10geg, e.g., Andersen, Bollerslev, Diebold, and Ebens (200idersen, Bollerslev, Diebold, and Labys (2001), Barffdor
Nielsen and Shephard (2004a), and the references therein.

11see, e.g., Andersen, Bollerslev, and Diebold (2007), Barffiilielsen and Shephard (2004b), Barndorff-Nielsen Shep-
hard (2006), and the references therein.

10



A. Realized Volatility

Let B be the price of an asset at tinhek et the natural logarithm of the price be denotedyby log (R ).

Consider the following continuous-time jump-diffusioropess fory;,

dyt = wdt+ 6idZ + ki dK;, @

wherely is the drift, o is the local price volatilitydz is a Wiener process; is the jump size, and; is a

Poisson counting process with (possibly) time-varyingmsityA;.

Suppose that the price is observed at discrete timesdl, ...,M within each dayt = 1,...,T and let

,j =W, —Wj—1 be theA = ﬁ period return. Realized variance is equal to the sum of sguiatradaily

returns,
RY =Y ;. 2)

Andersen, Bollerslev, Diebold, and Labys (2001) justifgdletically the use of realized variance as a
proxy for unobserved quadratic variation. They show thatha time interval between observations goes

to zero,A — 0 (orM — o) RV converges in probability to quadratic variation,

t N
; 2 2
IJllmcmR\{ = t71cr(u) du+J§:1(Kt7j). (3)

The first term on the right hand side of equatibh (3) is the tjooous) integrated variance. The second

term is the portion of overall variation that is due to thegagrece of jumps.

11



Barndorff-Nielsen and Shephard (2004b) and Barndorfidéie and Shephard (2006) define realized

bipower variation as

M M
B = 12| ——— reillre -+l (4)
t 1 (M_(1+I)>j_2+z(i+l)‘tJHt,j (I+1)‘

wherep; = \/% andi is the lag length in the multiplication of returns. In the fild — 0 (orM — ) BV
converges to integrated variance,

lim By = [ o?(s)ds (5)
M—0c0 t—1

Barndorff-Nielsen and Shephard (2004b) recognize thattimributions to overall variation can be sep-
arated into continuous and discontinuous parts. In pdaticthe portion of variation due to jumpg) is

just the difference betwedRM andBV,

J =RV — BV,. (6)

B. Jump Detection

In practice,J); as defined in equatio](6) can be negative and may result iry sraall positive jumps.
Many of these jumps may be attributable to measurement énrorder to alleviate this problem, | rely on

the simulation evidence in Huang and Tauchen (2005) anchesetio statisti; (A), defined as

1 [RM(A) —BU(A)]/RU(A)

1 | )
VA 4+ 202 - 5max(1, TQ(A) /BU(B)?)

Z(0) =

whereT Q(A) is the standardized realized tri-power quarticity

M? 1 M 4
= . /3 ) ) 4/3 ) ) 4/3
TQ(A) (M —2(1+i)> (“431/3> j:2+22(1+i)|rt+JA.A| INte (- @ripaal e —2rinaal ™, (8)
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a3 = 22/3(7/6)I"(1/2)~1 ~ 0.8308609, and is as before the lag length in returns. The ratio statistic
Z;:(A) defined in equatiori{7) is asymptotically normal under thik @funo jumps. Andersen, Bollerslev,

and Diebold (2007) define significant jumps as those for wHi¢h) a critical value, i.e.,

Xa®) = lzmpee, (RUD)-BU®)), ©)

wherely.y is the indicator function which takes a value of on& if y, and®y is the value of the inverse

cumulative standard normal distribution evaluated.an the empirical work that follows | set = 0.99.

The intuition behind the jump detection statisficin equation[(¥) is relatively simple. Realized vari-
ance RY) and bipower variationB\;) both estimate variance. Realized variance is simply thme st
squared high frequency returns. Any abnormally large {pesor negative) return will be squared and
thus have a large impact &®M. Bipower variation is the sum of the product of lagged (alis)Ireturns.
Given that price jumps are rare events, the lag in returngpiomier variation means that a large return in
one period will be multiplied by a small return from a nearlgyipd and hence not have a large impact on
BV;. An abnormally large return therefore results in a largéediinceR\ — B\, a correspondingly large

value ofZ;, and the day is classified as a jump day.

Microstructure noise in high frequency stock prices inducegative serial correlation in returns. An-
dersen, Bollerslev, and Diebold (2007) demonstrate thatahtocorrelation causes the jump detection
statistic in equatior[ {7) to be biased downward. They suggeseasing the lag in returns, i.e., increasing
i in equations[(4) and{8) above, in order to break the autetadion and improve the performance of the

test.

C. The Case of Electricity Prices

Electricity prices behave differently than stock prices. lafge upward movement in electricity prices

inevitably is followed shortly thereafter by a reversal.sé| electricity prices have intraday patterns that

13



vary by day of week and time of year. These peculiarities nhesaccounted for in the calculation of

realized volatility and subsequent jump detection.

C.1. Accounting for Reversals

In the case of electricity prices, a large positive retumjump, is followed soon thereafter by a large
negative return, or reversal. That is, when prices jumpsthisequent returns effectively display negative
serial correlation. The source of the autocorrelation fedint than the microstructure noise in equity
returns, but the effect is the same. The autocorrelatiommteat bipower variation is larger than it would
be in the absence of the reversal, the differeRsg— BV, and hence th&; statistic in equation{7) are

reduced, and the test underrejects the null of no jumps. Amele serves to illustrate the problem.

Figure 1 plots half-hourly spot prices and log returns fa 8A market on 19 March 2003. In half-
hours 16, 16.5, and 17, the spot price goes from $34.27 to/834&nd then back to $30.65. Thus, in
half-hour 16.5 the return is large and positive, and in halfr 17 the return is large and negative. This

series of prices and returns surely qualifies as a price $pilkay reasonable definition.

The realized variance for the dayR{ = 47.19 With the lag set ta = 0, the large positive return
in half-hour 16.5 is multiplied by (the absolute value of¢ targe negative return in half-hour 17 in the
calculation ofBV, resulting inBV = 42.44. TheZ; statistic takes the valug = 0.841 and the day is

classified as having no jump.

Andersen, Bollerslev, and Diebold (2007) find that settiagl (what they call “skip-one” returns) is
sufficient to break the serial correlation due to microgtices noise. Accordingly, | recalcula@v andz;
with the lag set ta = 1. Increasing the lag does not affé&®¥. However, lagging the returns means that
the large returns in hours 16.5 and 17 are not multipliedtteyen the calculation oBM. In this case,

BV, = 8.04,7 = 7.37, and the day is classified as a jump day.

12These calculations use raw returns, with no drift adjustm®ee the next subsection.

14



C.2. Intradaily Patterns

Chan, Gray, and van Campen (2008) (hereafter CGC) recodghi@te because electricity prices vary
throughout the day in predictable ways, in order to appljized volatility techniques to electricity prices
one must first demean returns. CGC specify and estimate a-raearting drift function to account for

known seasonalities in electricity prices. They specify dhift | j in equation[(l) as

e =Y(Btj — W), (10)

wherey is the speed of mean reversion, the conditional ntigams given by

eLj = BO + Blloffpeak+ Bleeekend‘|‘ B3| fall + B4|winter+ BSlspringa (11)

andl is the indicator function. For exampli f peak= 1 if hour (half-hour)j < 6 or j > 22 andlo  peak= 0
otherwis@ They estimate the coefficient vec®r= (v, Bo, B1, B2, B3, B4, Bs) for each market via nonlinear
regression and therefrom form an estimate of the gkift They demean returns by replacing; in

equations[(2)[(4), and](8) by
rej ="ruj— M- (12)

CGC point out (see their footnote 11) that the drift in equagi [10) and[(11) may be misspecified, and
that any such misspecification affects their estimateR\ofandB\,. | repeat the calculations using four

different demeaning schemes, i.e., different proxieg{or

13The additional subscrigtemphasizes that the observation is in hour (half-hgun) dayt.
14peak periods are defined to be from 6 am until 10 pm. For thehualfly Australian dataj = 0,0.5,1,1.5, ...,23,23.5.
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A. Raw Returns: While it is true that intradaily returns are not mean zerogvery case they have very

large standard deviations. As a baseline | perform the aizalyith raw, unadjusted returns.

P =0. (13)

B. Demeaned Returnsin this case | demean returns by month of year, day of weakhanr (half-hour)
of day. Return distributions for individual hours (halftivg) have non-zero skew and large excess kurtosis.
One very large positive (or negative) return observation egert undue influence on the mean return,

hence | ‘demean’ high frequency returns using the hourlif-tiaurly) median return.

ﬁt,\j = andyhh (14)

wherermndynr is the median return for dayin monthmn on day of the weekly, and in hour (half-hour)

j=hr.

C. CGC Drift Specification: The specification of the drift is given by equatidnl(10) ahd tonditional

mean6; j is given by equatior (11).

D. CGC Drift Specification with Hourly Dummies: In this specification of the drift, | include hourly
dummies rather than an offpeak dummy. The specificationuatsdor the fact the intradaily returns vary
across hours within peak and off-peak periods. The spetidficaf the drift is given by equation_(10) and

the conditional mean is

23
et,j = [30 + Z Bljlj + [32|weekend‘|‘ B3| fall + B4|winter+ lespring- (15)
=
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IV. Realized Volatility Results

Table 2 presents summary statistics for daily realizedtiityain annualize@ standard deviation form
(vRWM), for each of the four demeaning schemes (Panels A-D, quneling to schemes A-D) from the
previous section. For example, using the original CGC $gation for the drift, from Panel C the mean
daily (annualized) realized volatility for SNOWY is 1,986%igure 2 plots mean daily realized volatlity

for each market by demeaning scheme. Several interestitgdenerge from Table 2 and Figure 2.

1. Electricity prices are extremely volatile. The lowestanalaily volatility reported in Table 2 is
1,516%, in NEISO using demeaned returns (Panel B). The &iighe3,066%, in PJM using raw
returns (Panel A). These volatility estimates are rougiMy orders of magnitude greater than sim-
ilar estimates for equities, foreign exchange, and inteme. Extreme volatility in electricity
markets is caused primarily by the fact that electricity ¢ storable. Demand and supply shocks

are transmitted into prices almost instantaneously, witinmentory to cushion the blow.

2. Electricity markets in Australia and North America deplksimilar levels of realized volatility. For
any demeaning scheme, PJM is the most volatile leetd NEISO is the least volatile market,

as measured by'RV.

3. While the average level of realized volatility is similarAustralia and North America, the standard
deviation of realized volatility is much higher in Aust@liThat is, intradaily volatility is itself more
volatile in Australia than in North America. Also, the maxim observed daily realized volatility is
higher in Australian markets than in North American markdtge likely reason is the level of the
price cap in each market. In each of the North American maylgices are capped at $1,000, while

in Australia the cap is set at $10,000.

15Because the sample includes weekends and holidays, | agsBfteday year.

16For example, Andersen, Bollerslev, and Diebold (2007) riegiaily realized volatilties of 17.7% for the S&P500, 12.866
the DM$ exchange rate, and 9.7% for United States T-bondss& humbers are based on the column Iakié\eléz in their Table
1A. | assume a 365 day year to ensure consistency with thésesported in herein.

1"These results stand in contrast to the results of Zareifghattacharya, and Canizares (2007) who find that ONT is more
volatile than PIM. However, these authors use day-aheaddfd) prices for PIM and real-time prices for ONT. | uset@éak
prices for both.

17



4. On average, each of the demeaning schemes B, C, or D redaitgsealized volatility relative
to using raw returns, scheme A. Except for ONT, simply dermgameturns by month of year,
day of week, and hour of day (Panel B) results in the lowestnasés for daily realized volatility.
The inclusion of hourly dummies in the CGC drift specificati@®anel D) decreases daily realized

volatility relative to the original CGC drift specificatidifanel C).

5. Examining the minimum values of realized volatility rejgal in Table 2 points to one problem
introduced by demeaning raw returns. For every market uddereaning schemes C and D, and
five of the eight markets under scheme B, the minimum daillizea volatility is higher than the
minimum observed using raw returns. The reason is thatgdoenot fluctuate much on these very
mild days, so they do not display the intraday patterns tietemeaning schemes are designed to

eliminate. In this case demeaning the returns servagteasevolatility.

A. Comparison with Previous Results

Previous results reported in the literature suggest thatrAlian electricity markets are more volatile than
North American electricity markets. Higgs and Worthing{@008) write that (p.3173) “In fact, the Aus-
tralian electricity market is regarded as significantly eneolatile and spike-prone than many comparable
systems.” As documented in Table 2 and Figure 2, realizedtilit} calculated from intradaily data is

similar across markets in North America and Australia.

Also, the volatility estimates reported in Table 2 are muokater than previous estimates reported
in the literature. The Federal Energy Regulatory Commig&94) estimates volatility at approximately
300% in United States markets. Booth (2004) estimatesilitylah Australian markets at 900%. Figure
3.10 (p.86) in Eydeland and Wolyniec (2003) plots time seakannualized monthly electricity volatility
for several United States markets, with values ranging fraughly 100% to 1,000%. The key to reconcil-

ing these seemingly contradictory results lies in the olag@m frequency of the data. The results reported
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in the literature are based updaily averageprices, while the results presented in this work are based up

intradaily data.

Daily electricity prices are different than, e.g., dailpdlt prices. Daily stock prices are sampled
once per day, usually at closing. The realized volatilitgriature shows that sampling stock prices at
intradaily frequencies provides better estimates of the tinderlying volatility than does sampling at
the daily frequency. Dalily electricity prices are averagéitradaily prices. Volatility estimates based
upon intradaily electricity prices measure a differentrgig than volatility estimates based upon daily

electricity prices.

B. Low Frequency vs. High Frequency Monthly Volatility

Table 3 reports summary statistics for two estimates of higniolatility. For both estimates, | demean
using scheme B. Low frequency volatilitg)() is the standard deviation of logarithmic daily price chesg
where daily prices are the simple average of intradailygsiclhuso, is directly comparable to previous
volatility estimates reported in the literature such as¢hio Federal Energy Regulatory Committee (2004),
Booth (2004), and Eydeland and Wolyniec (2003). High fregyevolatility (o) is the square root of
monthly realized variance. For example, in NEISO the meanthip low frequency volatility ¢,) is
347%. The mean monthly high frequency volatilityy() is 1,669%@ oL andoy are based upon exactly

the same raw data.

The estimates a¥, reported in Table 3 range from 347% (NEISO) to 779% (QLD).Sehestimates are
similar in magnitude to those reported elsewhere in theglitee and are consistent with previous evidence

indicating that Australian electricity markets typicallye more volatile than North American markets.

18For each market, monthly volatilitys(;) reported in Table 3 exceeds the corresponding daily Vityati,/RW) reported in
Panel B of Table 2. The daily volatility in Table 2 is the squapot of daily realized variance. The monthly volatilityTable 3
is the square root of monthly realized variance. Effecyivible mean in Table 2 is the average of the square root, wielenean
in Table 3 is the square root of the average. Because theestp@trfunction is concave, the latter must always exceetbtineer.
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Monthly volatility estimates based on high frequency daarauch larger, with estimates of; rang-
ing from 1,669% (NEISO) to 2,988% (SA). Itis not surprisitigtoy exceed®, . Averaging pricefcross
the day necessarily must reduce the impact of price vanstigthin the day. Ye (2005) succinctly writes

“... the average price of a stock over a period is less vel#ti&n the stock price at a particular time.”

Table 3 also reports correlation coefficierp$ &and Spearman rank-order correlations between the time
series ofo. andoy. In all cases, G p < 1. Correlations betweea, andoy are larger in Australian
markets than in North American markets. The Spearman etioat uniformly are closer to one, and are
statistically significant at the 1% level for all markets egtPJM. In other words, high volatility months as
measured by also tend to have high volatility as measuredoipy particularly in Australian markets. But
there are some months that have relatively high volatilgyreasured by, but relatively low volatility

when measured byy, and vice versa.

Figure 3 plots the time series of andaoy for each of the eight markets. The figure makes clear that,
while the level of high frequency volatility is similar a@®markets in Australia and North Americg, is

itself much more volatile in Australia.

C. Why Does Low Frequency Data Rank Australia as more Volatié?

Owing to higher price caps, the largest spot price obsematin Australia are much larger than those in
North America. (See Panel A of Table 1.) Averaging price®sgithe day has a greater effect in North
America than in Australia. Hencey, which is based on average daily prices, is higher in Austrdlhis is
why previous authors conclude that Australian electrioitgrkets are more volatile than North American
markets. However, using high frequency data retains witlsip variations. Based on these measures,

North American markets are just as volatile, on average,usdralian markets.
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V. Jump Results

In this section, | examine jump detection based on high faqu electricity price data. Previous results
reported in the literature suggest that the frequency opiim electricity prices range from roughly 5%
to 20%. | show that increasing the length of the iag the calculation of bipower variation improves the

detection of jumps, but that the test still performs poorlyenw applied to electricity prices.

A. The Effect of Lag Length

Because the price increase on 19 March 2003 in SA is imméyliaecrsed (see Figure 1 and the discus-
sion in Section III.C), increasing the lag from= 0 toi = 1 is sufficient to ensure that the day is classified
as a jump day. However, not all price jumps reverse within logié-hour. Price spikes can persist for
more than one half-hour, resulting in higher order seriatedation. Andersen, Bollerslev, and Diebold
(2007) write that (p.711) “... higher-order serial depemgecould be broken in an analogous fashion by
further increasing the lag length.” | therefore expect thateasing the lag length in the calculationB);

will improve the performance of the jump detection test.Ha empirical work that follows, | examine the
performance of the jump detection statidijdor lag lengths rﬁ‘ing frorn=0toi = 5. Intotal, | examine

24 separate cases, four demeaning strategies and six Gt

B. Jump Frequency Estimates

Table 4 presents jump frequencies for each of the four deimmgachemes (Panels A-D, corresponding
to schemes A-D) at lag lengths ranging froms 0 toi = 5. For example, based on the CGC demeaning
scheme (Panel C) and lag lengthk 2, jumps occur on 15.5% of the sample days in NEISO. The total

sample size is 3,000 days (from Table 2) and 465 of these dayslassifed as jump days. The jump

1%Huang and Tauchen (2005) analyze the performance of the fletgetion statistic for various values of lag lengthsing
Monte Carlo simluations.
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frequency is calculated aﬁ%’ = 0.155. Figure 4 presents the same jump frequency data in gealphi

form. All jump frequencies are calculated at tne- 0.99 level of significance.

The frequency of jumps increases nearly monotonically withlag length in every market. Longer
lag lengths improve the performance of the jump detectishlig breaking the negative serial correlation
in returns induced by price spikes. An example is 23 July AAMNEISO, the first plot in Figure 5, which

is not classifed as a jump day with lag length 1, but is classified as a jump day with lag 2.

C. Comparison with Previous Results

Using daily Australian data and different methodology, dticand Worthington (2008) report jump fre-
guencies ranging from 5.16% (NSW) to 9.44% (VIC). Goto anddia (2004) use daily data from the
United States, NORDPOOL, and Australia and find jump freqigsnranging from 1.34% (Mid Columbia,
Washington) to 10.05% (PJM) in the United States, 4.39%4iHkl, Finland) to 18.28% (Copenhagen,
Denmark) in NORDPOOL, and 4.77% (VIC) to 12.46% (QLD) in Araéia. CGC use a shorter sample of
the Australian data together with the same jump detectiomigues used here and find jump frequencies

ranging from 7.5% (NSW) to 14.6% (SA).

To focus the discussion, and to facilitate comparison with€GC results, consider the original CGC
setup, demeaning scheme C with lag lengthl. From Panel C of Table 4, the jump frequency estimates

are 11.5% (NEISO), 4.1% (PJQ} and 10.3% (ONT) in North America, and 11.4% (NSW), 11.8% D)L

20pJM behaves differently than other markets. PJM is the thet muatile market as measured by daily realized volatiliiye
coefficient of variation (the coefficient of variation is tragio of standard deviation to mean)@RV (based on demeaning scheme
B) is only 0.33, the lowest any market considered in this paP8IT is the only other market for which the coefficient ofiasion
of VRV is less than 0.50. The level of realized volatility in PIMékatively high, but the volatility of realized volatilitgirelatively
low. While PJM is highly volatile, it displays the lowest fngency of price spikes. Several papers, including Bessaiebiand
Lemmon (2002), Longstaff and Wang (2004), Mount, Ning, amdl (2006), and Ullrich (2008), rely exclusively on PJM data.
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15.6% (SA), 11.2% (SNOWY), and 11.1% (VIC) in Austrﬂ?l’hese estimates are similar in magnitude

to those reported in the literature. However, there arerabueasons to question these results.

First, the results in Table 4 and those reported in CGC aredbaigon intradaily data, while the results
of Higgs and Worthington (2008) and Goto and Karolyi (2004) lzased upon daily data. Averaging prices
across the day should wash out some price jumps, and thus aud @xpect that jumps would be more

frequent in intradaily data.

Second, using exactly the same methodology used here, gerdeBollerslev, and Diebold (2007)
report jump frequencies (at tlie= 0.99 significance level; see their Table 3A) of 14.1% for the S&®,
25.4% for the% exchange rate, and 25.4% for United States T-bonds. Heagertip frequency estimates
for financial markets exceed the estimates for electricéykats. Given the unstorable nature of electricity,

it seems unlikely that jumps occur less frequently in eleityr prices than in financial prices.

Third, and most telling, given the CGC demeaning schemei and lag length, 29 of the 50 most
volatile days in the Australian markets are classfied as aginy a jump. The spot price reaches at least
$800 on each of those 29 high volatility, non-jump days. @yethese are days that should be classified
as jump days. The situation is similar for the North Americaarkets, where 30 of the 50 most volatile
days are classifed as non-jump days. Figure 5 plots the sigetgnd return for several days which are not

classified as jump days.

Increasing the lag length dramatically improves the pentorce of the jump detection test, but there
are still many days which the test misclassifies as non-juays.dAgain using the CGC demeaning scheme
B, and increasing the lag length ite= 5, the jump detection test still classifies 21 of the 50 mositite

days in Australian markets as non-jump days. The spot peaehes at least $1,500 on each of these days.

21CGC report (see their Table 4) jump frequency estimates5#hINSW), 12.0% (QLD), 14.6% (SA), 8.2% (SNOWY), and
10.0% (VIC). There are two reasons for the differences.t Hitsse a longer sample than CGC. Their sample ends in Degembe
2006, mine continues through April 2008. Second, CGC deétams to be the first difference in prices, whereas | defineme
as the first difference in log prices. | have also performedahalysis using the CGC definition of return and | find estanaf
jump frequencies which are for every market less than the €S&ithates. Hence, jumps were less frequent in the Janu@i/ 20
- April 2008 time period than in the CGC sample period. Definiaturns as log price differences increases the jump frexyue
estimates relative to defining returns to be price diffeesnéiowever, the conclusions of this section are unchangéuebuse of
log prices.
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The reason is because electricity prices can jump more thaa im a single day. The jump detection
statisticZ; in equation[(¥) is based on the assumption that jumps areevaras and that there can be at
most one jump in any one day. This assumption clearly doesaldtin the case of electricity prices.
Electricity prices can jump more than once in any one daynanitiple jumps can fool the test by inflating
the bipower variationB\{) estimate. An example from North America is 25 February 200QNT (the
second plot in the first column in Figure 5) which is not claedias a jump day even with the lag length

set toi = 5.

VI. Robustness

In this section, | repeat the calculations of realized vifatand the jump detection tests for (i) hourly

Austrailian data, and (ii) five-minute NEISO data.

A. Hourly Australian Data

| average half-hourly Australian data across each houreblyeproducing data at the hourly frequency. |
then compute realized volatility and jump frequency estéadrom this hourly Australian data. The results

(based on demeaning scheme B) are presented in Table 5.

The realized volatilities for Australian markets preseéritePanel A of Table 5 are less than the corre-
sponding results from Panel B of Table 2. Aggregating tha dptto the hourly frequency reduces realized
volatility by approximately 10% to 15%. Based upon hourlyaddoth PJM and ONT are more volatile
than any of the Australian markets. Based upon hourly dath, KSW and SNOWY are less volatile than

any of the North American markets.

From Panel B of Table 5, using hourly data also reduces thp ftequency estimates for the Australian
markets, by approximately 30% compared to the correspgndisults in Panel B of Table 4. Based on

these results, it is tempting to conclude that North Americerkets (except for PJM) are just as prone to
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price spikes as Australian markets. However, such a caodus premature given the poor performance

of the jump detection test. Still, these results dramdsidgtilistrate the effects of using average price data.

B. Five Minute NEISO Data

As a further illustration of the importance of averagingetompute the realized volatility estimates and
jump frequencies for one year (2003) in NEISO using data $eohgd the five minute frequen@.ln order

to save space, | do not report the results in a table. Focagjam on demeaning scheme B, the realized
volatility estimate is 2,783%. Based upon hourly data, tredized volatility for 2003 is 1,508%. | also
estimate the jump frequency at lag lengths ranging fren® toi = 5. The estimates of the jump frequency

exceed 89% in every case.

VII. Implications for Modelling Electricity Prices

The fact that daily electricity prices are averages hasigapbns for the model fitting exercises common
in the literature. Many authors, for example Guthrie andelsigick (2002), Hadsell, Marathe, and Shawky
(2004), and Hlouskova, Kossmeier, Obersteiner, and S¢l{a@05), point out the need to develop good
models of electricity spot prices. Much of the existing &liedy literature attempts to fit stochastic models
to electricity prices. In almost every case, the data usedtimnate the model parameters and to compare
competing models are daily average prices. Examples iaclehg (2000), Goto and Karolyi (2004),
Hadsell, Marathe, and Shawky (2004), Knittel and Rober@®%2, Cartea and Figueroa (2005), Mount,

Ning, and Cai (2006), and Geman and Roncoroni (2806).

22The five minute price data are also available on the NEISO iteebsaverage the five minute data across hours to confirm
that the hourly data are indeed built from the five minute data

23Two exceptions are Karakatsani and Bunn (2008) who usehoaifly prices from the UK, and Pirrong and Jermakyan
(2008) who use hourly prices from PJM. Higgs and Worthind@®08) recognize the loss of information caused by the use of
daily average prices, but choose to use daily data anywayodibe “ ... unwieldiness of intraday information.”
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Power plants are call options written on the “spark spretttg”spread between (i) the cost of fuel
required to generate electricity and (ii) the sales pricelettricity. If the spot price of electricity exceeds
the cost to generate the electricity, then the option isi@rhoney and will be exercised. That is, the owner
of the power plant will purchase fuel, convert the fuel intectricity, and sell the resulting electricity. If
the cost to generate electricity exceeds the spot pricesofratity, then the option is out-of-the-money and

the power plant will not operate.

Flexible power generation technologies, such as natusafiged combustion turbines, can respond to
price changes at the intradaily level. The owner of such abfiexplant effectively owns a collection of
spark spread call options. Foe example, the owner of a gbméum PJM has, for each day, 24 hourly

spark spread call optiois.

Baseload technologies, such as coal-fired and nuclear polaets, are not designed to respond to
intradaily prices. These technologies are effectivelyaAsipark spread options, i.e., they settle against
the average daily (or weekly) price. Similarly, many powarghase agreements (financial contracts) are
settled based on average prices. It is well known that Asfiois are worth less than collections of
otherwise similar individual optior@ The reason is because the average price is less volatilethkan

prices from which the average is calculated (ie.< o) and option value increases in volatility.

In practical applications, the model should be fitted to adiserved at the frequency that is relevant
to the problem at hand. Fitting a model to daily average prise@ reasonable and practical exercise if the
goal is to value baseload power plants and PPAs which segliest daily average prices. However, such

a model must necessarily undervalue technologies whigonesto intradaily prices.

Consider the simple example an option with a strike priceb®, &ind a day for which the price is $40

for hours 1-12 and $60 for hours 13-24. An hourly option wdudexercised in hours 13-24 and earn $10

240perational constraints (frictions) such as minimum up down-times, ramp rates, startup and shutdown costsretitice
the frequency with which these options may be exercised.
255ee, for example, the textbook treatment of McDonald (2006)p.444-449.
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per hour, or $120. An Asian option which settles against ¢/ diverage price would be at-the-money

and earn $0.

Further, because available electricity prices are averdbe search for the “correct” stochastic model
for electricity prices depends crucially on the frequencwihich the data is observed. Even if a particular
model cannot be rejected when fit to daily average pricegnihat be said to be correctly specified relative
to the underlying data generating process. This is an irmpbgoint that has not been emphasized in the

literature.

VIIl. Conclusions

This paper reports estimates of realized volatility andftequency of price spikes for eight wholesale
electricity markets - five in Australia, one in Canada, and iw the United States. The estimates of
daily realized volatility, expressed in annualized stadd#eviation form, range from 1,500% to 3,000%.
These estimates are much larger than previous estimatedaepn the literature, which range from ap-
proximately 300% to 900%. Further, previous results sugied Australian electricity markets are more
volatile than markets elsewhere. Using high frequency, dataow that electricity markets in North Amer-
ica are, on average, just as volatile as markets in Austrélia reason for the differences is the observation
frequency of the data. Previous results are based on dddy while the results reported here are based on

intradaily data.

| present evidence that jump detection techniques baseleodifference between realized volatility
and bipower variation are not reliable when applied to elety prices because (i) reversals in electricity
prices induce negative serial correlation in returns, @felectricity prices can jump more than once in
a single day. Adjusting the lag length in the calculation ipblver variation can overcome negative serial
correlation. One potential avenue for future research detgelop modified jump detection statistics to

account for the unique properties of electricity prices.
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Daily electricity prices are averages of intradaily priceodel fitting exercises that use data sampled
at daily (or lower) frequencies, while useful in certain Bqations, can never lead to the correct specifi-
cation for the underlying data generating mechanism. &nhgjlhourly (half-hourly) electricity prices are
averages of intrahourly prices, so fitting models to houdtiadsuffers from the same problem. The lesson
is that the modelling exercise should be based upon datavalosat a frequency that corresponds to the

particular problem at hand.
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The table summarizes wholesale electricity spot pricesranuoins. Price data have units of dollars per megawattt®i\/h). The return data
are in percent. NEISO is New England, PJM is the eastern hBleofisylvania-New Jersey-Maryland, and ONT is Ontarioa@anThe NEISO
data cover the period May 1999 through February 2008. The dRt&lcover the period June 2000 through May 2007. The ONTatater the
period May 2002 through April 2008. The raw data from the Nd@kmerican markets is observed at the hourly frequency. NSWew South
Wales, QLD is Queensland, SA is South Australia, SNOWY isShewy Mountains, and VIC is Victoria. The Australian dataethe period

TABLE 1: Hourly Price and Return Summary Statistics

January 1999 through April 2008. The raw data from the Aliatranarkets is observed at the half-hourly frequency.

Panel A: Prices

North America Australia
NEISO PJM ONT NSW QLD SA SNOWY VIC
NOBS 76,784 60,643 52,377 163,488 163,505 163,351 163,472 162,819
Mean $52.11 $45.37 $53.20 $37.26 $39.62 $45.98 $35.12 $34.55
Stdev $33.62 $38.37 $33.07| $188.10 $187.55 $222.84 $134.17 $126.92
Skew 10.40 7.70 5.11 35.19 29.45 32.56 36.81 41.02
Kurt 251.5 148.7 77.6 1,435 1,068 1,265 1,606 2,230
Min $5.01 $5.00 $5.00 $5.00 $5.09 $5.00 $5.10 $5.00
Max $1,003 $1,020 $1,028 $9,936 $9,921 $10,000 $7,716 $10,000
Panel B: Returns
North America Australia
NEISO PJM ONT NSW QLD SA SNOWY VIC
NOBS 76,543 60,308 52,247, 163,452 163,458 163,268 163,424 163,590
Mean -0.101% -0.025% -0.005% 0.001% 0.007% -0.003% 0.002% -0.005%
Stdev 20.87% 34.24% 27.21% 19.02% 25.98% 26.32% 18.44% 20.08%
Skew 0.193 0.068 0.047 0.479 0.335 -0.525 0.635 0.350
Kurt 17.48 5.17 9.43 109.5 76.93 80.95 92.38 78.84
Min -281.5% -300.8% -265.8% -572.3% -530.9% -610.0% -481.3% -487.9%
Max 331.8% 202.5% 290.4% 544.7% 591.4% 597.1% 496.5% 496.6%
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TABLE 2: Daily Realized Volatility Summary Statistics

The table summarizes the distributions of daily realizehtiidy (1/RM), expressed in annualized percentage terms, assuming dayogear,
for each of the four demeaning schemes detailed in SectioNBISO is New England, PJM is the eastern hub of Pennsydvhi@w Jersey-
Maryland, and ONT is Ontario, Canada. The NEISO data cowep#hniod May 1999 through February 2008. The PJM data coegrdtiod June
2000 through May 2007. The ONT data cover the period May 2868ugh April 2008. NSW is New South Wales, QLD is Queens|&lis
South Australia, SNOWY is the Snowy Mountains, and VIC ist¥fia. The Australian data cover the period January 1998utiir April 2008.

Panel A: Raw Returns

North America Australia
NEISO PJIM ONT NSW QLD SA SNOWY VIC
NOBS 3,000 2,270 2,100 3,367 3,356 3,324 3,359 3,210
Mean 1,709% 3,066% 2,294% 2,054% 2,519% 2,721% 2,026% 2,238%
Median 1,522% 2,988% 2,142% 1,727% 1,733% 2,008% 1,731% 1,921%
Stdev 849% 941% 977% 1,463% 2,311% 2,156% 1,329% 1,415%
Skew 2.18 0.51 1.48 3.94 2.90 2.78 3.67 3.56
Kurt 10.53 3.53 8.25 25.68 13.80 12.38 21.46 20.08
Min 356% 497% 227% 326% 337% 576% 362% 470%
Max 7,891% 6,801% 10,290% | 20,344% 21,850% 18,836% 13,290% 14,3069
Panel B: Demeaned Returns
North America Australia
NEISO PJIM ONT NSW QLD SA SNOWY VIC

NOBS 3,000 2,270 2,100 3,367 3,356 3,324 3,359 3,210
Mean 1,516% 2,712% 2,087% 1,675% 2,215% 2,394% 1,638% 1,785%
Median 1,305% 2,617% 1,928% 1,321% 1,381% 1,616% 1,305% 1,417%
Stdev 846% 901% 968% 1,403% 2,305% 2,215% 1,283% 1,397%
Skew 2.32 0.67 1.65 4.42 3.02 2.79 4.05 3.90
Kurt 11.25 3.61 8.88 30.47 14.48 12.33 24.52 22.64
Min 321% 709% 411% 392% 351% 520% 397% 412%
Max 7,976% 6,571% 10,141% | 20,342% 21,698% 18,816% 13,237% 14,2489
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TABLE 2: Daily Realized Volatility Summary Statistics - continued

The table summarizes the distributions of daily realizethtiity (1/RM), expressed in annualized percentage terms, assuming day6gear,
for each of the four demeaning schemes detailed in SectiofBISO is New England, PJM is the eastern hub of Pennsydvilew Jersey-
Maryland, and ONT is Ontario, Canada. The NEISO data cowep#hniod May 1999 through February 2008. The PJM data coegrdtiod June
2000 through May 2007. The ONT data cover the period May 2868ugh April 2008. NSW is New South Wales, QLD is Queens|&lis
South Australia, SNOWY is the Snowy Mountains, and VIC ist¥fia. The Australian data cover the period January 1938utiir April 2008.

Panel C: CGC Drift Specification

North America Australia

NEISO PJM ONT NSW QLD SA SNOWY VIC
NOBS 3,000 2,270 2,100 3,367 3,356 3,324 3,359 3,210
Mean 1,632% 2,852% 2,105% 2,015% 2,480% 2,643% 1,986% 2,183%
Median 1,441% 2,761% 1,942% 1,691% 1,713% 1,959% 1,686% 1,869%
Stdev 790% 827% 877% 1,417% 2,191% 2,034% 1,287% 1,366%
Skew 2.26 0.68 1.68 3.94 2.94 2.80 3.66 3.57
Kurt 10.96 3.49 8.92 25.48 14.04 12.48 21.28 20.02
Min 487% 981% 521% 435% 489% 729% 442% 513%
Max 7,488% 6,251% 9,439% | 19,655% 21,115% 17,701% 12,828% 13,785%

Panel D: CGC Dirift Specification with Hourly Dummies

North America Australia

NEISO PJM ONT NSW QLD SA SNOWY VIC
NOBS 3,000 2,270 2,100 3,367 3,356 3,324 3,359 3,210
Mean 1,564% 2,746% 2,062% 1,911% 2,391% 2,514% 1,871% 2,040%
Median 1,363% 2,636% 1,889% 1,570% 1,596% 1,789% 1,554% 1,701%
Stdev 796% 810% 881% 1,383% 2,175% 2,053% 1,263% 1,356%
Skew 2.34 0.77 1.74 4.20 3.04 2.83 3.87 3.73
Kurt 11.31 3.66 9.22 27.90 14.68 12.62 22.87 21.25
Min 466% 919% 518% 660% 705% 697% 656% 719%
Max 7,486% 6,381% 9,523% | 19,683% 21,109% 17,690% 12,913% 13,870%
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TABLE 3: Monthly Realized Volatility Summary Statistics

The table summarizes the distributions of monthly volstiliLow frequency volatility ¢,) is the standard deviation of logarithmic daily price
changes. High frequency volatilitys(;) is the square root of monthly realized variance. Both estii®m of monthly volatility are expressed in
annualized percentage terms, assuming a 365 day $€aris the autocorrelation at lagg months. Panel A presents data for North American
wholesale electricity spot markets. NEISO is New EnglartiV s the eastern hub of Pennsylvania-New Jersey-Marylamd ,ONT is Ontario,
Canada. The NEISO data cover the period May 1999 throughuBgb2008. The PJM data cover the period June 2000 through2@@y. The
ONT data cover the period May 2002 through April 2008. | demeav returns by month of year and day of week (scheme B).

Panel A: North America

NEISO PJM ONT

oL OH oL OH oL OH
NOBS 106 106 84 84 72 72
Mean 347% 1,669% 561% 2,785% 428% 2,267
Stdev 184% 469% 161% 497% 123% 625.9
Skew 3.22 0.97 1.73 0.84 1.69 1.37
Kurt 15.91 3.96 7.32 3.52 9.88 5.74
Min 156% 745% 331% 1,976% 186% 1,331
Max 1,390% 3,131% 1,289% 4,346% 1,037% 4,638
ACy 0.363 0.474 0.440 0.668 0.383 0.628
AC -0.054 0.237 0.297 0.384 0.201 0.349
AC3 -0.159 0.198 0.020 0.212 0.205 0.243
ACs -0.046 0.037 0.069 -0.097 0.133 -0.010
ACi2 0.114 -0.045 0.201 -0.073 -0.053 -0.111
p 0.414 0.189 0.585
Spearman 0.542%** 0.253** 0.573***
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The table summarizes the distributions of monthly volstiliLow frequency volatility ¢,) is the standard deviation of logarithmic daily price
changes. High frequency volatilitys(;) is the square root of monthly realized variance. Both et of monthly volatility are expressed in
annualized percentage terms, assuming a 365 dayA@aiis the autocorrelation at lapgmonths. Panel B presents data for Australian wholesale
electricity spot markets. NSW is New South Wales, QLD is Qustand, SA is South Australia, SNOWY is the Snowy Mountaarg] VIC is
Victoria. The Australian data cover the period January 18@8ugh April 2008. | demean raw returns by month of year amdaf week (scheme

B).

TABLE 3: Monthly Realized Volatility Summary Statistics - C ontinued

Panel B: Australia

NSW QLD SA SNOWY VIC
oL OH oL OH oL OH oL OH oL OH
NOBS 112 112 112 112 112 112 112 112 112 112
Mean 656%  1,994%| 779%  2,828%| 776%  2,988%]| 559%  1,903%| 607%  2,097%
Stdev 473% 894% | 478%  1,490%| 496%  1,302%| 374% 838% | 394% 844%
Skew 1.16 1.26 0.80 0.82 1.29 0.57 1.10 1.15 1.48 1.14
Kurt 3.49 4.47 2.96 2.82 4.13 2.39 3.28 3.90 4.80 3.78
Min 135% 850% | 151% 862% | 167%  1,048% | 144% 869% | 177% 933%
Max 2,082% 5,137%| 2,203% 6,827%| 2,413% 6,195%| 1,747% 4,574%)| 1,889% 4,872%
ACy 0.346 0.354 | 0.219 0.345 | 0.458 0.534 | 0.274 0.393 | 0.198 0.270
AG 0.107 0.155 | -0.007 0.301 | 0.280 0.366 | 0.006 0.140 | 0.170 0.114
AC3 -0.139 -0.050 | -0.109 0.204 | 0.047 0.297 | -0.268 -0.078 | 0.067 0.076
ACs 0.006 0.082 | -0.102 0.163 | -0.129 0.172 | 0.085 0.176 | 0.013 -0.026
ACi2 0.032 -0.096 | 0.048 0.089 | 0.268 0.126 | -0.052 -0.014 | 0.014 -0.005
p 0.698 0.746 0.750 0.771 0.754
Spearman 0.785*** 0.814*** 0.830*** 0.827*** 0.757***
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TABLE 4: Jump Frequencies

The table summarizes jump frequencies, by market, for ebittedour demeaning schemes detailed in Section IIl as aifumof the lag length

i in the calculation 0BV, andT Q, equations[{(4) and(8) in the text. A day is classified as a jdaypif the ratio statistiZ;(A), equation[(I7) in
the text, exceeds the value of the inverse cumulative stdrmu@rmal distribution evaluated atd®. That is, the day is classified as a jump day
if 1z, a)>0,4, takes a value of one, whetg.y is the indicator function which takes a value of on& it y, and®q g is the value of the inverse
cumulative standard normal distribution evaluated.@890NEISO is New England, PJM is the eastern hub of Penndghidew Jersey-Maryland,
and ONT is Ontario, Canada. The NEISO data cover the periog M89 through February 2008. The PJM data cover the perind 2000
through May 2007. The ONT data cover the period May 2002 tgjnofipril 2008. NSW is New South Wales, QLD is Queensland, SBdsth
Australia, SNOWY is the Snowy Mountains, and VIC is Victorighe Australian data cover the period January 1999 throygfi 2008.

Panel A: Raw Returns

North America Australia

Lag () NEISO PIM ONT NSW QLD SA SNOWY VIC

0 0.065 0.036 0.088 | 0.044 0.054 0.100 0.046 0.039
1 0.175 0.096 0.207| 0.151 0.183 0.224 0.153 0.141
2 0.257 0.142 0.285| 0.234 0.270 0.342 0.242 0.251
3 0.286 0.157 0.323| 0.405 0.429 0.483 0.425 0.430
4 0.321 0.153 0.337 | 0.514 0.527 0.557 0.519 0.528
5 0.358 0.178 0.349 | 0.537 0.572 0.566 0.532 0.547

Panel B: Demeaned Returns

North America Australia

Lag () NEISO PIM ONT NSW QLD SA SNOWY VIC

0 0.075 0.031 0.097 | 0.079 0.075 0.134 0.081 0.071
1 0.165 0.078 0.186| 0.158 0.188 0.259 0.160 0.177
2 0.241 0.128 0.271| 0.247 0.298 0.385 0.257 0.290
3 0.289 0.147 0.297 | 0.357 0.389 0.472 0.364 0.3889
4

5

0.313 0.153 0.324 | 0.423 0.471 0.527 0.431 0.444
0.357 0.185 0.333| 0.440 0.500 0.545 0.447 0.470
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TABLE 4: Jump Frequencies - continued

The table summarizes jump frequencies, by market, for edttfedour demeaning schemes detailed in Section Il as aifumof the lag length

i in the calculation 0BV, andT Q, equations[{4) and(8) in the text. A day is classified as a jdmpif the ratio statistiZ; (A), equation[(¥7) in
the text, exceeds the value of the inverse cumulative stdnaamal distribution evaluated at9®. That is, the day is classified as a jump day
if 1z,(a)>0,4, takes a value of one, whetg., is the indicator function which takes a value of one it y, and®qgg is the value of the inverse
cumulative standard normal distribution evaluated.@890NEISO is New England, PJM is the eastern hub of PenndghiMdew Jersey-Maryland,
and ONT is Ontario, Canada. The NEISO data cover the periog 189 through February 2008. The PJM data cover the perind 2000
through May 2007. The ONT data cover the period May 2002 tginofipril 2008. NSW is New South Wales, QLD is Queensland, SBdath
Australia, SNOWY is the Snowy Mountains, and VIC is Victorighe Australian data cover the period January 1999 throygfi 2008.

Panel C: CGC Drift Specification

North America Australia

Lag () NEISO PIM ONT NSW QLD SA SNOWY VIC

0 0.049 0.023 0.046 | 0.037 0.044 0.063 0.035 0.034
1 0.115 0.041 0.103| 0.114 0.118 0.156 0.112 0.111
2 0.155 0.056 0.140| 0.200 0.199 0.265 0.213 0.239
3 0.180 0.061 0.157| 0.323 0.287 0.334 0.337 0.350
4 0.208 0.065 0.166 | 0.387 0.330 0.382 0.392 0.415
5 0.259 0.090 0.185| 0.383 0.349 0.378 0.392 0.406

Panel D: CGC Drift Specification with Hourly Dummies

North America Australia

Lag () NEISO PIM ONT NSW QLD SA SNOWY VIC
0 0.052 0.022 0.051| 0.040 0.044 0.069 0.040 0.043
1 0.115 0.039 0.107 | 0.124 0.132 0.157 0.124 0.137
2 0.166 0.059 0.153| 0.235 0.231 0.263 0.240 0.259
3 0.194 0.070 0.170 | 0.347 0.299 0.337 0.362 0.382
4

5

0.219 0.070 0.172| 0.375 0.343 0.381 0.376 0.408
0.244 0.093 0.187 | 0.415 0.375 0.382 0.419 0.440




oy

TABLE 5: Daily Realized Volatility Summary Statistics using Hourly Data

The table summarizes (Panel A) the distributions of daiblized volatility (,/R\), expressed in annualized percentage terms, assuming a 365
day year, and (Panel B) jump frequency estimates. The loalfh Australian data have been aggregated up to hourly dataaveraged within
each hour. NEISO is New England, PIM is the eastern hub ofdykmmia-New Jersey-Maryland, and ONT is Ontario, Canddese NEISO

data cover the period May 1999 through February 2008. The diilcover the period June 2000 through May 2007. The ONTaodatr the
period May 2002 through April 2008. NSW is New South WalesDQ& Queensland, SA is South Australia, SNOWY is the Snowy Mains,

and VIC is Victoria. The Australian data cover the periodulag 1999 through April 2008. | demean raw returns by montyeatr, day of week,

and hour of day (scheme B).

Panel A: Realized Volatility R\

North America Australia

NEISO PJIM ONT NSW QLD SA SNOWY VIC
NOBS 3,000 2,270 2,100 3,379 3,371 3,349 3,378 3,252
Mean 1,516% 2,712% 2,087% 1,511% 1,893% 2,010% 1,456% 1,558%
Median 1,305% 2,617% 1,928% 1,171% 1,204% 1,376% 1,142% 1,229%
Stdev ,846% ,901% ,968% 1,348% 1,886% 1,849% 1,219% 1,259%
Skew 2.32 0.67 1.65 4.44 2.92 2.90 4.23 412
Kurt 11.25 3.61 8.88 28.59 13.45 12.96 25.24 24.09
Min 321% 709% 411% 357% 314% 367% 337% 340%
Max 7,976% 6,571% 10,141% | 17,753% 17,440% 14,349% 11,283% 11,730%

Panel B: Jump Frequencies

North America Australia

Lag () NEISO PIM ONT NSW QLD SA SNOWY VIC
0 0.075 0.031 0.097 | 0.046 0.060 0.049 0.046 0.048
1 0.165 0.078 0.186| 0.086 0.124 0.148 0.090 0.105
2 0.241 0.128 0.271| 0.180 0.236 0.228 0.169 0.190
3 0.289 0.147 0.297 | 0.210 0.300 0.261 0.205 0.212
4

5

0.313 0.153 0.324 | 0.249 0.342 0.298 0.245 0.256
0.357 0.185 0.333| 0.301 0.389 0.338 0.297 0.301
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FIGURE 1: Half-Hourly Prices and Returns for 19 March 2003 in South Australia (SA)

The figure plots half-hourly spot prices (solid line, lefigixand returns (dashed line, right axis) for a single dayiMBoch 2003, in the South
Australia electricity market. The figure illustrates thepimntance of increasing the lag length in the calculationipbler variationBV; (see

equation[(#) in the test) for the case of electricity prid@scause an upward price jump in electricity markets inbljtés followed by a reversal,
or downward jump, setting the lag length equal te 0 inflates the value dB\, and causes the jump detection stati&i¢see equatiori {7) in the

test) to underreject the null of no jumps. With- 1 this day is not classified as a jump day.
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FIGURE 2: Mean Daily Realized Volatility (/RM{)

The figure plots mean daily realized volatilityR\, expressed as an annualized standard deviation, for edbk demeaning schemes defined
in Section 1l in the text. NEISO is New England, PIM is theteas hub of Pennsylvania-New Jersey-Maryland, and ONT i&f» Canada.
The NEISO data cover the period May 1999 through Februar$ 208e PJM data cover the period June 2000 through May 200¥ ONiT data
cover the period May 2002 through April 2008. NSW is New Sdiiies, QLD is Queensland, SA is South Australia, SNOWY isShewy
Mountains, and VIC is Victoria. The Australian data cover greriod January 1999 through April 2008.
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Monthly Electricity Volatility

FIGURE 3

line) is the standard deviation of logarithmic daily prideaages. high frequency volatilityo(;, dashed
line) is the square root of monthly realized variance. Battinegates of monthly volatility are expressed in

The figure plots the time series of two estimates of monthlgtilily. Low frequency volatility ¢, solid
annualized percentage terms, assuming a 365 day year. bhdetaw returns by month of year and day of
week (scheme B).

@ @ @ ®
=1 =1 =1 =3
<1 <1 <1 <3

LS LS LS LS
c c c c
< < < <
] ] ] -
<z
Vl.l\d.
)
-
)
_-
S ———
PR ) ) ) 1o}
<< =} Q Q =3
. <1 =1 <1 <3
P LS LS LS L&
S~ g g g 5
> ] ] ] -
-
]
M ,/I > w % m
o -=z=77" . z >
=
~= N N N o
IS =] o =] =3
~ <1 <1 <1 <3
- LS LS LS LS
> c c c <
<~ 5] 5] 5] <
v ] ] ] -
—
=
<~
=3 =3 =3 =3
g g g g
T T T T T T T ] T T T T T T T ] T T T T T T T ] T T T T T T T T g
000 0009 000S 0007 000€ 000C 000T 0~ 000 0009 000S 0007 000€ 000C 000T 0~ 000 0009 000S 0007 000€ 000C 000T 0~ 000. 0009 000S 000F 00OE 000C 000T 0~
o™
<
8 8 8 3
& z & & &
L 3 L L L
] <L ] ] ]
] " > ] ] -
.
-,
<o
-
7
=
_r
37
) -= ) ) 1o}
o ?, o o =}
<] ~ <] <] S
LS Ed LS LS FN
c <=, c c <
] o ] 5 kS
~<.
% = =7 =
m 5 - o
=z o —===zzZ7 = Zz
T Tos- n
N ) N N o
o ~ =] o o
<1 <1 <1 <3
L L LS LS
c c c c
5] 5] 5] <
] ] ] -
=3 =3 =3 =3
g g g g
T T T T T T T ] T T T T T T T ] T T T T T T T ] T T T T T T T S
000 0009 000S 0007 000€ 000C 000T 0~ 000 0009 0005 0007 000€ 000C 000T 0~ 000 0009 0005 0007 000€ 000C 000T 0~ 000L 0009 000S 000F 00OE 000C 000T i




FIGURE 4. Jump Frequencies

The figure plots estimated jump frequencies for each of thmedming schemes defined in Section |l
in the text and for lag lengthis= 0 throughi = 5. NEISO is New England, PJM is the eastern hub of
Pennsylvania-New Jersey-Maryland, and ONT is Ontarioa@anThe NEISO data cover the period May
1999 through February 2008. The PJM data cover the perioel 2000 through May 2007. The ONT
data cover the period May 2002 through April 2008. NSW is Newt8 Wales, QLD is Queensland, SA
is South Australia, SNOWY is the Snowy Mountains, and VIC istdfia. The Australian data cover the
period January 1999 through April 2008.

© Lag Lengthi=0 © Lag Lengthi=1
0 @
< <
@ o

N 4 N 4
- -
o
NEISO PIM ONT NSW QLD SA  SNOwY VIC NEISO PIM ONT NSW QLD SA  SNOwY VIC
I A Raw Returns [l B. Demeaned Returns I A RawReturns [l B. Demeaned Returns
I C. CGC Drift I D. CGC Drift w/hourly dummies I C. CGC Drift I D. CGC Drift w/hourly dummies
© Lag Lengthi=2 © Lag Lengthi=3

o
NEISO PIM ONT NSW QLD SA  SNOwY VIC NEISO PIM ONT NSW QLD SA  SNOwY VIC
I A RawReturns [l B. Demeaned Returns I A Raw Returns [l B. Demeaned Returns
I C. CGC Drift I D. CGC Drift w/hourly dummies I C. CGC Drift I D. CGC Drift w/hourly dummies

© Lag Lengthi=4 © Lag Lengthi=5

o
NEISO PJM ONT NSW QLD SA  SNOwWY VIC NEISO PJM ONT NSW QLD SA  SNOwWY VIC
I A. Raw Returns [ B. Demeaned Returns I A. Raw Returns [ B. Demeaned Returns

I C. CGC Drift I D. CGC Drift w/hourly dummies I C. CGC Drift I D. CGC Drift w/hourly dummies

44



FIGURE 5: Non-Jump Days

The figure plots spot prices and (raw) returns for days diagsas not having a jump. Spot prices (solid
line) are on the left axis and returns (dashed line) are omighe axis. The jump detection is based upon

demeaning scheme C and lag lenpgth 1.
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