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A thorough understanding of volatility is crucial for many topics of interest to financial economists

including derivative pricing, corporate risk management,market efficiency, and many others. Recent de-

velopments in the financial econometrics literature, combined with the availability of intradaily data, have

led to much better estimates of volatility. Volatility estimates based on high frequency data, so-called re-

alized volatilities, improve our understanding of price formation. One of the most promising uses of high

frequency data is to discern jumps in otherwise continuous price paths.

Electricity is not yet storable in economically meaningfulquantities and as a result electricity prices are

extremely volatile. Supply and demand shocks are transmitted into prices almost instantaneously - literally

at the speed of light - resulting in the price spikes endemic to electricity markets, episodes during which

the price can increase by a factor of 100 or more, followed by arelatively quick return to normal levels.

Price spikes make wholesale electricity markets very risky. A front page article (Smith (2008)) in the 17

July 2008 edition ofThe Wall Street Journalreports that five retail electricity companies in Texas failed

when wholesale electricity prices spiked up to $4000. Typical wholesale electricity prices are $40 to $100.

In order for firms operating in the industry to effectively manage such risk, it is necessary to have a good

understanding price spikes and volatility.

Given the importance of price spikes in electricity markets, combined with the advent of high frequency

electricity price data, it seems natural to apply realized volatility techniques to electricity prices. One

particularly attractive feature of realized volatility and the associated jump detection tests is that they are

nonparametric. The correct specification for modelling electricity prices is still an open question. One

goal of this paper is to shed light on the behavior of electricity prices without resorting to parametric

specifications for the underlying data generating process.

I calculate realized volatility and estimate the frequencyof price spikes for eight wholesale electricity

markets - five in Australia, one in Canada, and two in the United States. The Australian data is observed at

the half-hourly frequency; the North American data is observed at the hourly frequency.
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I make several contributions. First, the estimates of dailyelectricity price volatility reported in this

paper, expressed in annualized standard deviation form, range from 1,500% to 3,000%. These estimates

are much larger than previous estimates reported in the literature, which range from approximately 300% to

900%. Further, previous results suggest that Australian electricity markets are more volatile than markets

elsewhere. Using high frequency data, I show that electricity markets in North America are, on average,

just as volatile as markets in Australia. The reason for these seemingly contradictory results lies in the

observation frequency of the data used to make the estimates. Previous results in the literature are based

on daily prices, while the results presented here are based on intradaily prices. Unlike, e.g., daily stock

prices which are sampled once per day, available daily electricity prices are averages of intradaily prices.

Averaging pricesacrossthe day necessarily attenuates price variationswithin the day.

In order to reconcile previous results with those presentedhere I calculate two estimates of monthly

volatility. First, I create average daily prices from intradaily data and calculate monthly volatility as the

standard deviation of daily (log) price changes, which I term low frequency volatility. The low frequency

volatility estimates are similar to estimates reported in the literature. Second, I calculate monthly realized

volatility, which I term high frequency volatility. Not surprisingly, the estimates of high frequency volatility

are much greater than the corresponding low frequency estimates. Low frequency and high frequency

estimates are based on exactly the same raw data.

Ranking the volatility of markets based upon low frequency volatility, I find that Australian markets are

more volatile than North American markets. Based upon high frequency volatility, I find that markets in

Australia and North America display similar levels of volatility. Because price spikes in Australian markets

tend to be larger than price spikes in North American markets(owing to lower price caps in North America),

the dilutive effect of averaging on volatility is less pronounced in Australian markets. This explains why

previous authors, using daily data, have concluded that Australian electricity markets are more volatile.

Next I show that the jump detection techniques developed foruse in financial markets and based on

high frequency data are less effective in electricity markets. There are two primary reasons. The first reason
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is because jumps in high frequency electricity prices inevitably are reversed within a few hours. It is the

upward jump and the reversal together that define the pricespike.

In the case of high frequency stock price data, microstructure noise induces spurious negative serial

correlation in returns. Serial correlation causes the jumpdetection test statistic to be biased downward, i.e.,

to incorrectly classify some days as non-jump days when in fact a jump occurred. Andersen, Bollerslev, and

Diebold (2007) show that offsetting, or lagging, returns inthe calculation of the jump detection statistic

serves to break the negative autocorrelation. Reversals inelectricity prices also induce negative serial

correlation in returns. Though the cause is different than the microstructure noise in equity prices, the

effect is the same - the jump detection statistic underrejects the null of no jumps. I show that, in the case of

electricity prices, it is crucial to increase the lag lengthby several periods in order to account for reversals.

The second, and more troubling, reason that jump detection based on high frequency electricity price

data does not work well is because electricity prices can jump more than once in a single day. The jump

detection methodology is based on the assumption that pricejumps are rare and thus there is at most one

jump per day. I present evidence that multiple jumps can foolthe jump detection test.

Many authors have pointed out that, because electricity is effectively not storable, it is crucial to develop

a good model for spot electricity prices. A spot price model is required for pricing electricity derivatives,

both real and financial. Much of the existing electricity literature is devoted to determining which stochastic

model best fits electricity prices. Such efforts typically rely on mean-reverting, jump-diffusion, and/or

regime-switching models common from the modelling of equities, foreign exchange, and interest rates.

Almost all of these model fitting exercises use data sampled at daily (or lower) frequencies. Such models

are important for valuing options that settle against the daily average price, such as baseload power plants

and many power purchase agreements. However, daily models must necessarily undervalue options which

settle against intradaily prices.2

2Specifically, models of daily electricity prices must undervalue flexible technologies such as gas-fired combustion turbines.
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It is well known that the distribution of average prices differs from the distribution of the prices from

which the average is taken.3 Because daily electricity prices are averages, fitting models to data sam-

pled at the daily frequency can never lead to a “correct” specification for the underlying data generating

mechanism. This is an important point that has not been emphasized in the literature.

The layout of this paper is as follows. Section I provides a literature review. Section II describes and

summarizes the data. Section III reviews the theory and calculation of realized volatility and jump detection

based thereupon, and discusses its application to the case of electricity prices. Section IV presents estimates

of realized electricity volatility and Section V presents estimates for jump frequencies. Section VI presents

realized volatility and jump frequency estimates for two alternative datasets, hourly Australian data and

five-minute New England data. Section VII considers the pitfalls associated with fitting models of spot

electricity to daily average prices. Section VIII summarizes the results and gives directions for further

research.

I. Literature Review

The nascent financial economics literature about electricity prices is growing rapidly owing to (i) deregula-

tion of electricity markets worldwide, (ii) the unique behavior of electricity prices, and (iii) the increasing

availability of price data. In this section I review the relevant literature on electricity prices.

Deng (2000) is one of the first widely-cited papers in the literature in which the author attempts to model

electricity prices using stochastic models. Deng (2000) relies on affine jump-diffusions4 to model spot

electricity prices. He incorporates regime switching between “abnormal” and “normal” states to account

for price spikes. In later work, Deng (2005) uses real options methods to value power plants in the presence

of jumpy electricity prices.

3In a separate context Nielsen and Sandmann (2003) write “Themain problem ... with the arithmetic average ... is that the law
of the arithmetic average is unknown.”

4See Duffie, Pan, and Singleton (2000).
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Escribano, Pena, and Villaplana (2002) study daily electricity prices for six different markets. They

document that electricity prices are highly variable, mean-reverting, right-skewed, and severely leptokurtic,

and they also document price spikes.

Atkins and Chen (2002) study electricity prices in the Alberta, Canada market. They, too, document

all the usual properties - right-skewed prices, leptokurtic price and return distributions, and price spikes.

Atkins and Chen (2002) suggest that the realized volatilityapproach of Andersen, Bollerslev, Diebold, and

Ebens (2001) might be of use in characterizing the stochastic process responsible for generating electricity

prices.

Guthrie and Videbeck (2002) and Guthrie and Videbeck (2007)examine high frequency spot price data

from New Zealand. They treat electricity delivered at different times of the day as separate commodities.

They point out that an accurate model of electricity spot prices is necessary for the purposes of derivative

valuation and real options analysis often applied to power plants. They emphasize the need for intradaily

data.

Goto and Karolyi (2004) study electricity price volatilityin markets in Australia, the Nordic Power

Exchange (NORDPOOL), and the United States. They document that electricity price returns have near

zero mean, high volatility, and large excess kurtosis. Evenafter including jumps and ARCH effects, the

residuals from their model are still autocorrelated, leaving (p.22), “... important unexplained systematic

components ...”.

Hadsell, Marathe, and Shawky (2004) study electricity volatility by fitting ARCH-type models to elec-

tricity prices for five US markets. In their words (p.24), “Understanding the volatility dynamics of elec-

tricity markets is important in evaluating the deregulation experience, in forecasting future spot prices, and

in pricing electricity futures and other energy derivatives.” They find that the persistence of electricity

volatility has decreased over time and speculate that this might be due to learning effects in relatively new

markets.
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Cartea and Figueroa (2005) develop a model for electricity spot prices incorporating mean reversion,

seasonality and, discontinuous jumps. They calibrate the model using the daily average of intradaily spot

prices from the UK and then develop closed-form expressionsfor the forward price.

Knittel and Roberts (2005) analyze spot electricity pricesfrom California and subsequently fit several

models common in the finance literature. They document high variability, positive skewness, and an inverse

leverage effect, which they attribute to convex supply curves (marginal costs).5 They point out that negative

prices, while unique to electricity markets and quite novel, are of little importance in pricing of financial

securities.

Higgs and Worthington (2005) use high frequency data from Austrailian markets to model volatility us-

ing ARCH-type models. Consistent with previous work, they find that electricity price return distributions

have essentially zero mean, high volatility, and fat tails.Interestingly, they proxy for information arrivals

using demand volume. To my knowledge, theirs is the only paper to attempt to capture such an effect in

electricity markets.

Hlouskova, Kossmeier, Obersteiner, and Schnabl (2005) develop a real options model to value power

plants in the German market. They point out that real optionsmodels can be used in the electricity industry

to assess investment decisions and to analyze a firm’s portfolio of physical assets (e.g., power plants) and

financial assets (e.g., futures and options contracts). Most importantly, they point out that in the presence

of a well-functioning spot market the decision to operate a power plant is independent from other assets in

the portfolio, both physical and financial. From p.300, “...the spot market automatically splits a utility into

two separate firms: a power producer and a power marketer. ...the optimization problems relating to the

optimal exercise of contracts can be solved separately fromthe overall portfolio problem.”

Geman and Roncoroni (2006) use data from three markets in theUnited States to fit a mean-reverting,

jump-diffusion (in their words a “jump-reversion”) to daily logarithmic electricity prices. They point out

5The leverage effect in equity markets refers to the asymmetrical response of volatility to price changes. Prices and volatility
are inversely related, but the volatility increase that accompanies a price decrease is greater in magnitude than the volatility
decrease that accompanies a price increase.
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that nonstorability means that one cannot derive spot pricefundamentals from forward prices because

the standard spot-forward relationship familiar in financial markets does not hold. They also point out

that the Pennsylvania-New Jersey-Maryland (PJM) market design has functioned well and that the PJM

transmission system has been very efficient.

Mount, Ning, and Cai (2006) fit a stochastic regime-switching model to PJM electricity prices. They

suggest that price spikes are more common in Australian electricity markets because regulators in Australia

are less willing to “... modify the behavior of suppliers ...”. Consistent with Ullrich (2008), they show that

the difference between available supply and contemporaneous demand is crucial in price formation.

Hambly, Howison, and Kluge (2007) develop a model for spot electricity prices with three separate

components - seasonality, an Ornstein-Uhlenbeck process for spot prices, and a mean-reverting jump pro-

cess. By separately modelling the O-U process and the jump process, they can specify different speeds of

mean reversion for continuous price movements and jumps.

Huisman, Huurman, and Mahieu (2007) point out that, becauseday-ahead electricity prices are deter-

mined simultaneuously for all hours of the next day, it is incorrect to model these prices as a time series.

Zareipour, Bhattacharya, and Canizares (2007) study electricity price volatility in the Ontario market.

They conclude that the Ontario electricity market is one of the most volatile markets worldwide. One

potential reason is that Ontario has no day-ahead forward market.

Perhaps the most sophisticated effort to model electricityprices is in Pirrong and Jermakyan (2008).

These authors use hourly demand and fuel price as state variables for modelling the price of electricity.

Using data from PJM, Pirrong and Jermakyan (2008) find a significant risk premium in forward prices,

even in the very short-term.

An excellent recent paper by Karakatsani and Bunn (2008) uses half-hourly data from the UK market

to study price formation subsequent to market restructuring in March 2001. Karakatsani and Bunn (2008)

introduce a regime switching model for each half-hourly trading period and show that fundamentals mat-
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ter more during off-peak periods, while they find evidence ofstrategic behaviour (market power) during

periods of high prices. They emphasize the need to go beyond purely statistical models of electricity prices.

Benth and Koekebakker (2008) model forward contracts written on electricity. Benth and Koekebakker

(2008) provides a cautionary tale about the applicability of standard models used for equities and even

other commodities to the case of electricity.

Huisman (2008) fits several regime switching models to average day-ahead electricity prices from the

Dutch APX market and finds that the inclusion of temperature as a forecasting variable improves the fit of

the model.

The work most closely related to this paper is Chan, Gray, andvan Campen (2008). These authors also

compute estimates of realized electricity price volatility and jump frequencies based on high frequency

data. Chan, Gray, and van Campen (2008) recognize that unlike, e.g., equity prices, intradaily electricity

price changes are not mean zero, owing to distinct seasonalities across the day and across the year. Hence,

they model the drift of the price process as mean-reverting,incorporating dummy variables to account for

seasonalities, and use the resulting estimates to demean returns.

This paper is different from Chan, Gray, and van Campen (2008) in important ways. First, I emphasize

the different information content of intradaily data versus daily data. Second, while Chan, Gray, and van

Campen (2008) define return to be the first difference in pricelevels, I use the first difference in log prices.

Each approach has its advantages, but I choose to use log prices in order to make my results comparable

to the finance literature. The conclusions of this paper are qualitatively similar in either case. Third, I

compare the performance of four separate schemes to accountfor intradaily patterns. Fourth, Chan, Gray,

and van Campen (2008) deal exclusively with Australian electricity markets. I analyze data from markets

in Australia and North America.6 Fifth, I show that jump detection tests based on the difference between

realized variance and bipower variation require modification in the case of electricity prices.

6Previous work based on low frequency data concludes that Australian electricity markets are more volatile than other markets.
I find that volatility is similar across markets.
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II. Data

The data used in this study are publicly available7 high frequency wholesale electricity spot prices from

eight markets - five in Australia and three in North America. The Australian markets are New South Wales

(NSW), Queensland (QLD), South Australia (SA), the Snowy Mountains (SNOWY), and Victoria (VIC).

The Australian data cover the period January 1999 through April 2008. For the Australian markets, the raw

data are half-hourly.

The North American markets are New England (NEISO), the eastern hub of Pennsylvania-New Jersey-

Maryland (PJM), and Ontario, Canada (ONT). The NEISO data cover the period May 1999 through Febru-

ary 2008. The PJM data cover the period June 2000 through May 2007. The ONT data cover the period

May 2002 through April 2008. For the North American markets,the raw data are hourly.

Electricity is produced and consumed all day every day, thusthe data include weekends and holidays,

and cover all hours (half-hours) of the day. I drop days that have missing return observations.

Table 1 lists overall summary statistics for prices and returns, i.e., log prices differences. Price data

have units of dollars per megawatthour ($/MWh). The return data are in percent. While it is well known

that electricity prices can be less than or equal to zero, negative prices render the concept of return poorly

defined.8 Low positive prices can also result in very large returns which, while likely to be classified as

jumps, are not economically important. I drop all hours for which the spot price is less than or equal $5.00.

I experimented with various values for the cutoff ranging from $0.00 to $10.00 with little effect on the

results.9

7For NEISO, www.iso-ne.com. For PJM, www.pjm.com and see Longstaff and Wang (2004) for details. For ONT,
www.ieso.com and see Zareipour, Bhattacharya, and Canizares (2007) and Zareipour, Canizares, and Bhattacharya (2007) for
details. For the Australian markets, www.nemmco.com.au and see Higgs and Worthington (2005) and Higgs and Worthington
(2008) for details.

8One of the advantages of defining return as the difference in price levels as in Chan, Gray, and van Campen (2008), rather
than the log difference used here is that negative prices cause no difficulty.

9I also drop 8-May-2000 in NEISO. This particular day saw hourly spot prices reach $6,000, and thus induces large increases
in spot price mean, standard deviation, skewness, and kurtosis. Arguably, any effort to determine jumps in electricityprices should
include such an extreme outlier, however, removal of this one day has little effect on the estimates of realized volatility presented
in Table 2 and the estimates of jump frequencies given in Table 4.
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Table 1 confirms stylized facts reported in Escribano, Pena,and Villaplana (2002), Atkins and Chen

(2002), Goto and Karolyi (2004), Knittel and Roberts (2005), Geman and Roncoroni (2006), Karakatsani

and Bunn (2008), Higgs and Worthington (2008), and many others. Properties of electricity prices include

large standard deviations (relative to the mean), positiveskewness, severe leptokurtosis, and large posi-

tive outliers. Returns are near zero on average, have large standard deviations (relative to the mean), are

approximately symmetrical, and display severe leptokurtosis.

Prices in Australian markets have higher standard deviations, are more positively skewed, and have

fatter tails than prices in North American markets. Return distributions are more similar across markets,

though return kurtosis is higher for the Australian markets.

III. Realized Volatility and Jumps

Recent work in financial econometrics shows that realized volatilty calculated from high frequency data

provides a superior estimate of true latent volatility thanestimates based on daily (or lower) frequency

data.10 Realized volatility techniques also show great promise in separating continuous price movements

from discontinuous jumps.11 Given the focus on price spikes in the electricity literature and the advent of

high frequency electricity price data, it seems natural to apply these techniques to electricity prices.

In this section I present a brief review of the theory and calculation of realized volatility and the jump

detection techniques developed by Barndorff-Nielsen and Shephard (2004b) and further refined by Huang

and Tauchen (2005). I focus on the implementation of the calculations in the case of electricity prices.

10See, e.g., Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (2001), Barndorff-
Nielsen and Shephard (2004a), and the references therein.

11See, e.g., Andersen, Bollerslev, and Diebold (2007), Barndorff-Nielsen and Shephard (2004b), Barndorff-Nielsen andShep-
hard (2006), and the references therein.
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A. Realized Volatility

Let Pt be the price of an asset at time-t. Let the natural logarithm of the price be denoted byyt = log(Pt).

Consider the following continuous-time jump-diffusion process foryt ,

dyt = µtdt+ σtdZt + κtdKt , (1)

whereµt is the drift,σt is the local price volatility,dZt is a Wiener process,κt is the jump size, andKt is a

Poisson counting process with (possibly) time-varying intensityλt .

Suppose that the price is observed at discrete timesj = 1, ...,M within each dayt = 1, ...,T and let

rt, j ≡ yt, j −yt, j−1 be the∆ ≡ 1
M period return. Realized variance is equal to the sum of squared intradaily

returns,

RVt =
M

∑
j=2

r2
t, j . (2)

Andersen, Bollerslev, Diebold, and Labys (2001) justify theoretically the use of realized variance as a

proxy for unobserved quadratic variation. They show that, as the time interval between observations goes

to zero,∆ → 0 (or M → ∞) RVt converges in probability to quadratic variation,

lim
M→∞

RVt =
∫ t

t−1
σ(u)2du+

Nt

∑
j=1

(κ2
t, j ). (3)

The first term on the right hand side of equation (3) is the (continuous) integrated variance. The second

term is the portion of overall variation that is due to the presence of jumps.
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Barndorff-Nielsen and Shephard (2004b) and Barndorff-Nielsen and Shephard (2006) define realized

bipower variation as

BVt = µ−2
1

(
M

M− (1+ i)

)
M

∑
j=2+(i+1)

|rt, j ||rt, j−(i+1)|, (4)

whereµ1 ≡
√

2
π andi is the lag length in the multiplication of returns. In the limit ∆ → 0 (or M → ∞) BVt

converges to integrated variance,

lim
M→∞

BVt =
∫ t

t−1
σ2(s)ds. (5)

Barndorff-Nielsen and Shephard (2004b) recognize that thecontributions to overall variation can be sep-

arated into continuous and discontinuous parts. In particular, the portion of variation due to jumps (Jt ) is

just the difference betweenRVt andBVt ,

Jt = RVt −BVt. (6)

B. Jump Detection

In practice,Jt as defined in equation (6) can be negative and may result in many small positive jumps.

Many of these jumps may be attributable to measurement error. In order to alleviate this problem, I rely on

the simulation evidence in Huang and Tauchen (2005) and use the ratio statisticZt(∆), defined as

Zt(∆) =
1√
∆

[RVt(∆)−BVt(∆)]/RVt(∆)√
(µ−4

1 +2µ−2
1 −5)max(1,TQt(∆)/BVt(∆)2)

, (7)

whereTQt(∆) is the standardized realized tri-power quarticity

TQt(∆) =

(
M2

M−2(1+ i)

)(
1

µ3
4/3

)
M

∑
j=2+2(1+i)

|rt+ j∆,∆|4/3|rt+( j−(1+i))∆,∆|4/3|rt+( j−2(1+i))∆,∆|4/3, (8)
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µ4/3 ≡ 22/3Γ(7/6)Γ(1/2)−1 ≈ 0.8308609, andi is as before the lag length in returns. The ratio statistic

Zt(∆) defined in equation (7) is asymptotically normal under the null of no jumps. Andersen, Bollerslev,

and Diebold (2007) define significant jumps as those for whichZt(∆) a critical value, i.e.,

Jt,α(∆) = IZt(∆)>Φα

(
RVt(∆)−BVt(∆)

)
, (9)

whereIx>y is the indicator function which takes a value of one ifx > y, andΦα is the value of the inverse

cumulative standard normal distribution evaluated atα. In the empirical work that follows I setα = 0.99.

The intuition behind the jump detection statisticZt in equation (7) is relatively simple. Realized vari-

ance (RVt ) and bipower variation (BVt ) both estimate variance. Realized variance is simply the sum of

squared high frequency returns. Any abnormally large (positive or negative) return will be squared and

thus have a large impact onRVt . Bipower variation is the sum of the product of lagged (absolute) returns.

Given that price jumps are rare events, the lag in returns in bipower variation means that a large return in

one period will be multiplied by a small return from a nearby period and hence not have a large impact on

BVt . An abnormally large return therefore results in a large differenceRVt −BVt , a correspondingly large

value ofZt , and the day is classified as a jump day.

Microstructure noise in high frequency stock prices induces negative serial correlation in returns. An-

dersen, Bollerslev, and Diebold (2007) demonstrate that this autocorrelation causes the jump detection

statistic in equation (7) to be biased downward. They suggest increasing the lag in returns, i.e., increasing

i in equations (4) and (8) above, in order to break the autocorrelation and improve the performance of the

test.

C. The Case of Electricity Prices

Electricity prices behave differently than stock prices. Alarge upward movement in electricity prices

inevitably is followed shortly thereafter by a reversal. Also, electricity prices have intraday patterns that
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vary by day of week and time of year. These peculiarities mustbe accounted for in the calculation of

realized volatility and subsequent jump detection.

C.1. Accounting for Reversals

In the case of electricity prices, a large positive return, or jump, is followed soon thereafter by a large

negative return, or reversal. That is, when prices jump, thesubsequent returns effectively display negative

serial correlation. The source of the autocorrelation is different than the microstructure noise in equity

returns, but the effect is the same. The autocorrelation means that bipower variation is larger than it would

be in the absence of the reversal, the differenceRVt −BVt and hence theZt statistic in equation (7) are

reduced, and the test underrejects the null of no jumps. An example serves to illustrate the problem.

Figure 1 plots half-hourly spot prices and log returns for the SA market on 19 March 2003. In half-

hours 16, 16.5, and 17, the spot price goes from $34.27 to $3,870, and then back to $30.65. Thus, in

half-hour 16.5 the return is large and positive, and in half-hour 17 the return is large and negative. This

series of prices and returns surely qualifies as a price spikeby any reasonable definition.

The realized variance for the day isRVt = 47.19.12 With the lag set toi = 0, the large positive return

in half-hour 16.5 is multiplied by (the absolute value of) the large negative return in half-hour 17 in the

calculation ofBVt , resulting inBVt = 42.44. TheZt statistic takes the valueZt = 0.841 and the day is

classified as having no jump.

Andersen, Bollerslev, and Diebold (2007) find that settingi = 1 (what they call “skip-one” returns) is

sufficient to break the serial correlation due to microstructure noise. Accordingly, I recalculateBVt andZt

with the lag set toi = 1. Increasing the lag does not affectRVt . However, lagging the returns means that

the large returns in hours 16.5 and 17 are not multiplied together in the calculation ofBVt . In this case,

BVt = 8.04,Zt = 7.37, and the day is classified as a jump day.

12These calculations use raw returns, with no drift adjustment. See the next subsection.
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C.2. Intradaily Patterns

Chan, Gray, and van Campen (2008) (hereafter CGC) recognizethat, because electricity prices vary

throughout the day in predictable ways, in order to apply realized volatility techniques to electricity prices

one must first demean returns. CGC specify and estimate a mean-reverting drift function to account for

known seasonalities in electricity prices. They specify the drift µt, j
13 in equation (1) as

µt, j = γ
(
θt, j −yt, j

)
, (10)

whereγ is the speed of mean reversion, the conditional meanθt, j is given by

θt, j = β0 + β1Io f f peak+ β2Iweekend+ β3I f all + β4Iwinter + β5Ispring, (11)

andI is the indicator function. For example,Io f f peak= 1 if hour (half-hour)j < 6 or j > 22 andIo f f peak= 0

otherwise.14 They estimate the coefficient vectorΘ≡ (γ,β0,β1,β2,β3,β4,β5) for each market via nonlinear

regression and therefrom form an estimate of the driftµ̂t, j . They demean returns by replacingrt, j in

equations (2), (4), and (8) by

r∗t, j = rt, j − µ̂t, j . (12)

CGC point out (see their footnote 11) that the drift in equations (10) and (11) may be misspecified, and

that any such misspecification affects their estimates ofRVt andBVt . I repeat the calculations using four

different demeaning schemes, i.e., different proxies forµ̂t, j .

13The additional subscriptj emphasizes that the observation is in hour (half-hour)j on dayt.
14Peak periods are defined to be from 6 am until 10 pm. For the half-hourly Australian data,j = 0,0.5,1,1.5, ...,23,23.5.
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A. Raw Returns: While it is true that intradaily returns are not mean zero, in every case they have very

large standard deviations. As a baseline I perform the analysis with raw, unadjusted returns.

µ̂t, j = 0. (13)

B. Demeaned Returns: In this case I demean returns by month of year, day of week, and hour (half-hour)

of day. Return distributions for individual hours (half-hours) have non-zero skew and large excess kurtosis.

One very large positive (or negative) return observation can exert undue influence on the mean return,

hence I ‘demean’ high frequency returns using the hourly (half-hourly) median return.

µ̂t, j = r̄mn,dy,hr , (14)

where ¯rmn,dy,hr is the median return for day-t in monthmn, on day of the weekdy, and in hour (half-hour)

j = hr.

C. CGC Drift Specification: The specification of the drift is given by equation (10) and the conditional

meanθt, j is given by equation (11).

D. CGC Drift Specification with Hourly Dummies : In this specification of the drift, I include hourly

dummies rather than an offpeak dummy. The specification accounts for the fact the intradaily returns vary

across hours within peak and off-peak periods. The specification of the drift is given by equation (10) and

the conditional mean is

θt, j = β0 +
23

∑
j=1

β1 j I j + β2Iweekend+ β3I f all + β4Iwinter + β5Ispring. (15)
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IV. Realized Volatility Results

Table 2 presents summary statistics for daily realized volatility in annualized15 standard deviation form

(
√

RVt ), for each of the four demeaning schemes (Panels A-D, corresponding to schemes A-D) from the

previous section. For example, using the original CGC specification for the drift, from Panel C the mean

daily (annualized) realized volatility for SNOWY is 1,986%. Figure 2 plots mean daily realized volatlity

for each market by demeaning scheme. Several interesting facts emerge from Table 2 and Figure 2.

1. Electricity prices are extremely volatile. The lowest mean daily volatility reported in Table 2 is

1,516%, in NEISO using demeaned returns (Panel B). The highest is 3,066%, in PJM using raw

returns (Panel A). These volatility estimates are roughly two orders of magnitude greater than sim-

ilar estimates for equities, foreign exchange, and interest rates.16. Extreme volatility in electricity

markets is caused primarily by the fact that electricity is not storable. Demand and supply shocks

are transmitted into prices almost instantaneously, with no inventory to cushion the blow.

2. Electricity markets in Australia and North America display similar levels of realized volatility. For

any demeaning scheme, PJM is the most volatile market17 and NEISO is the least volatile market,

as measured by
√

RVt .

3. While the average level of realized volatility is similarin Australia and North America, the standard

deviation of realized volatility is much higher in Australia. That is, intradaily volatility is itself more

volatile in Australia than in North America. Also, the maximum observed daily realized volatility is

higher in Australian markets than in North American markets. The likely reason is the level of the

price cap in each market. In each of the North American markets, prices are capped at $1,000, while

in Australia the cap is set at $10,000.

15Because the sample includes weekends and holidays, I assumea 365 day year.
16For example, Andersen, Bollerslev, and Diebold (2007) report daily realized volatilties of 17.7% for the S&P500, 12.8%for

the DM$ exchange rate, and 9.7% for United States T-bonds. These numbers are based on the column labeledRV1/2
t in their Table

1A. I assume a 365 day year to ensure consistency with the results reported in herein.
17These results stand in contrast to the results of Zareipour,Bhattacharya, and Canizares (2007) who find that ONT is more

volatile than PJM. However, these authors use day-ahead (forward) prices for PJM and real-time prices for ONT. I use real-time
prices for both.
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4. On average, each of the demeaning schemes B, C, or D reducesdaily realized volatility relative

to using raw returns, scheme A. Except for ONT, simply demeaning returns by month of year,

day of week, and hour of day (Panel B) results in the lowest estimates for daily realized volatility.

The inclusion of hourly dummies in the CGC drift specification (Panel D) decreases daily realized

volatility relative to the original CGC drift specification(Panel C).

5. Examining the minimum values of realized volatility reported in Table 2 points to one problem

introduced by demeaning raw returns. For every market underdemeaning schemes C and D, and

five of the eight markets under scheme B, the minimum daily realized volatility is higher than the

minimum observed using raw returns. The reason is that prices do not fluctuate much on these very

mild days, so they do not display the intraday patterns that the demeaning schemes are designed to

eliminate. In this case demeaning the returns serves toincreasevolatility.

A. Comparison with Previous Results

Previous results reported in the literature suggest that Australian electricity markets are more volatile than

North American electricity markets. Higgs and Worthington(2008) write that (p.3173) “In fact, the Aus-

tralian electricity market is regarded as significantly more volatile and spike-prone than many comparable

systems.” As documented in Table 2 and Figure 2, realized volatility calculated from intradaily data is

similar across markets in North America and Australia.

Also, the volatility estimates reported in Table 2 are much greater than previous estimates reported

in the literature. The Federal Energy Regulatory Committee(2004) estimates volatility at approximately

300% in United States markets. Booth (2004) estimates volatility in Australian markets at 900%. Figure

3.10 (p.86) in Eydeland and Wolyniec (2003) plots time series of annualized monthly electricity volatility

for several United States markets, with values ranging fromroughly 100% to 1,000%. The key to reconcil-

ing these seemingly contradictory results lies in the observation frequency of the data. The results reported
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in the literature are based upondaily averageprices, while the results presented in this work are based upon

intradaily data.

Daily electricity prices are different than, e.g., daily stock prices. Daily stock prices are sampled

once per day, usually at closing. The realized volatility literature shows that sampling stock prices at

intradaily frequencies provides better estimates of the true underlying volatility than does sampling at

the daily frequency. Daily electricity prices are averagesof intradaily prices. Volatility estimates based

upon intradaily electricity prices measure a different quantity than volatility estimates based upon daily

electricity prices.

B. Low Frequency vs. High Frequency Monthly Volatility

Table 3 reports summary statistics for two estimates of monthly volatility. For both estimates, I demean

using scheme B. Low frequency volatility (σL) is the standard deviation of logarithmic daily price changes,

where daily prices are the simple average of intradaily prices. ThusσL is directly comparable to previous

volatility estimates reported in the literature such as those in Federal Energy Regulatory Committee (2004),

Booth (2004), and Eydeland and Wolyniec (2003). High frequency volatility (σH) is the square root of

monthly realized variance. For example, in NEISO the mean monthly low frequency volatility (σL) is

347%. The mean monthly high frequency volatility (σH) is 1,669%.18 σL andσH are based upon exactly

the same raw data.

The estimates ofσL reported in Table 3 range from 347% (NEISO) to 779% (QLD). These estimates are

similar in magnitude to those reported elsewhere in the literature and are consistent with previous evidence

indicating that Australian electricity markets typicallyare more volatile than North American markets.

18For each market, monthly volatility (σH ) reported in Table 3 exceeds the corresponding daily volatility (
√

RVt) reported in
Panel B of Table 2. The daily volatility in Table 2 is the square root of daily realized variance. The monthly volatility inTable 3
is the square root of monthly realized variance. Effectively, the mean in Table 2 is the average of the square root, while the mean
in Table 3 is the square root of the average. Because the square root function is concave, the latter must always exceed theformer.
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Monthly volatility estimates based on high frequency data are much larger, with estimates ofσH rang-

ing from 1,669% (NEISO) to 2,988% (SA). It is not surprising thatσH exceedsσL. Averaging pricesacross

the day necessarily must reduce the impact of price variationswithin the day. Ye (2005) succinctly writes

“... the average price of a stock over a period is less volatile than the stock price at a particular time.”

Table 3 also reports correlation coefficients (ρ) and Spearman rank-order correlations between the time

series ofσL andσH . In all cases, 0< ρ < 1. Correlations betweenσL andσH are larger in Australian

markets than in North American markets. The Spearman correlations uniformly are closer to one, and are

statistically significant at the 1% level for all markets except PJM. In other words, high volatility months as

measured byσL also tend to have high volatility as measured byσH , particularly in Australian markets. But

there are some months that have relatively high volatility as measured byσL, but relatively low volatility

when measured byσH , and vice versa.

Figure 3 plots the time series ofσL andσH for each of the eight markets. The figure makes clear that,

while the level of high frequency volatility is similar across markets in Australia and North America,σH is

itself much more volatile in Australia.

C. Why Does Low Frequency Data Rank Australia as more Volatile?

Owing to higher price caps, the largest spot price observations in Australia are much larger than those in

North America. (See Panel A of Table 1.) Averaging prices across the day has a greater effect in North

America than in Australia. Hence,σL, which is based on average daily prices, is higher in Australia. This is

why previous authors conclude that Australian electricitymarkets are more volatile than North American

markets. However, using high frequency data retains withinday variations. Based on these measures,

North American markets are just as volatile, on average, as Australian markets.
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V. Jump Results

In this section, I examine jump detection based on high frequency electricity price data. Previous results

reported in the literature suggest that the frequency of jumps in electricity prices range from roughly 5%

to 20%. I show that increasing the length of the lagi in the calculation of bipower variation improves the

detection of jumps, but that the test still performs poorly when applied to electricity prices.

A. The Effect of Lag Length

Because the price increase on 19 March 2003 in SA is immediately reversed (see Figure 1 and the discus-

sion in Section III.C), increasing the lag fromi = 0 to i = 1 is sufficient to ensure that the day is classified

as a jump day. However, not all price jumps reverse within onehalf-hour. Price spikes can persist for

more than one half-hour, resulting in higher order serial correlation. Andersen, Bollerslev, and Diebold

(2007) write that (p.711) “... higher-order serial dependence could be broken in an analogous fashion by

further increasing the lag length.” I therefore expect thatincreasing the lag length in the calculation ofBVt

will improve the performance of the jump detection test. In the empirical work that follows, I examine the

performance of the jump detection statisticZt for lag lengths ranging fromi = 0 to i = 5. In total, I examine

24 separate cases, four demeaning strategies and six lag lengths.19

B. Jump Frequency Estimates

Table 4 presents jump frequencies for each of the four demeaning schemes (Panels A-D, corresponding

to schemes A-D) at lag lengths ranging fromi = 0 to i = 5. For example, based on the CGC demeaning

scheme (Panel C) and lag lengthi = 2, jumps occur on 15.5% of the sample days in NEISO. The total

sample size is 3,000 days (from Table 2) and 465 of these days are classifed as jump days. The jump

19Huang and Tauchen (2005) analyze the performance of the jumpdetection statistic for various values of lag lengthi using
Monte Carlo simluations.
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frequency is calculated as465
3,000 = 0.155. Figure 4 presents the same jump frequency data in graphical

form. All jump frequencies are calculated at theα = 0.99 level of significance.

The frequency of jumps increases nearly monotonically withthe lag lengthi in every market. Longer

lag lengths improve the performance of the jump detection test by breaking the negative serial correlation

in returns induced by price spikes. An example is 23 July 2001in NEISO, the first plot in Figure 5, which

is not classifed as a jump day with lag lengthi = 1, but is classified as a jump day with lagi = 2.

C. Comparison with Previous Results

Using daily Australian data and different methodology, Higgs and Worthington (2008) report jump fre-

quencies ranging from 5.16% (NSW) to 9.44% (VIC). Goto and Karolyi (2004) use daily data from the

United States, NORDPOOL, and Australia and find jump frequencies ranging from 1.34% (Mid Columbia,

Washington) to 10.05% (PJM) in the United States, 4.39% (Helsinki, Finland) to 18.28% (Copenhagen,

Denmark) in NORDPOOL, and 4.77% (VIC) to 12.46% (QLD) in Australia. CGC use a shorter sample of

the Australian data together with the same jump detection techniques used here and find jump frequencies

ranging from 7.5% (NSW) to 14.6% (SA).

To focus the discussion, and to facilitate comparison with the CGC results, consider the original CGC

setup, demeaning scheme C with lag lengthi = 1. From Panel C of Table 4, the jump frequency estimates

are 11.5% (NEISO), 4.1% (PJM)20, and 10.3% (ONT) in North America, and 11.4% (NSW), 11.8% (QLD),

20PJM behaves differently than other markets. PJM is the the most volatile market as measured by daily realized volatility. The
coefficient of variation (the coefficient of variation is theratio of standard deviation to mean) of

√
RVt (based on demeaning scheme

B) is only 0.33, the lowest any market considered in this paper. ONT is the only other market for which the coefficient of variation
of

√
RVt is less than 0.50. The level of realized volatility in PJM is relatively high, but the volatility of realized volatility is relatively

low. While PJM is highly volatile, it displays the lowest frequency of price spikes. Several papers, including Bessembinder and
Lemmon (2002), Longstaff and Wang (2004), Mount, Ning, and Cai (2006), and Ullrich (2008), rely exclusively on PJM data.
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15.6% (SA), 11.2% (SNOWY), and 11.1% (VIC) in Australia.21 These estimates are similar in magnitude

to those reported in the literature. However, there are several reasons to question these results.

First, the results in Table 4 and those reported in CGC are based upon intradaily data, while the results

of Higgs and Worthington (2008) and Goto and Karolyi (2004) are based upon daily data. Averaging prices

across the day should wash out some price jumps, and thus one would expect that jumps would be more

frequent in intradaily data.

Second, using exactly the same methodology used here, Andersen, Bollerslev, and Diebold (2007)

report jump frequencies (at theα = 0.99 significance level; see their Table 3A) of 14.1% for the S&P500,

25.4% for theDM
$ exchange rate, and 25.4% for United States T-bonds. Hence the jump frequency estimates

for financial markets exceed the estimates for electricity markets. Given the unstorable nature of electricity,

it seems unlikely that jumps occur less frequently in electricity prices than in financial prices.

Third, and most telling, given the CGC demeaning scheme andi = 1 lag length, 29 of the 50 most

volatile days in the Australian markets are classfied as not having a jump. The spot price reaches at least

$800 on each of those 29 high volatility, non-jump days. Clearly these are days that should be classified

as jump days. The situation is similar for the North Americanmarkets, where 30 of the 50 most volatile

days are classifed as non-jump days. Figure 5 plots the spot price and return for several days which are not

classified as jump days.

Increasing the lag length dramatically improves the performance of the jump detection test, but there

are still many days which the test misclassifies as non-jump days. Again using the CGC demeaning scheme

B, and increasing the lag length toi = 5, the jump detection test still classifies 21 of the 50 most volatile

days in Australian markets as non-jump days. The spot price reaches at least $1,500 on each of these days.

21CGC report (see their Table 4) jump frequency estimates of 7.5% (NSW), 12.0% (QLD), 14.6% (SA), 8.2% (SNOWY), and
10.0% (VIC). There are two reasons for the differences. First, I use a longer sample than CGC. Their sample ends in December
2006, mine continues through April 2008. Second, CGC define returns to be the first difference in prices, whereas I define return
as the first difference in log prices. I have also performed the analysis using the CGC definition of return and I find estimates of
jump frequencies which are for every market less than the CGCestimates. Hence, jumps were less frequent in the January 2007
- April 2008 time period than in the CGC sample period. Defining returns as log price differences increases the jump frequency
estimates relative to defining returns to be price differences. However, the conclusions of this section are unchanged by the use of
log prices.
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The reason is because electricity prices can jump more than once in a single day. The jump detection

statisticZt in equation (7) is based on the assumption that jumps are rareevents and that there can be at

most one jump in any one day. This assumption clearly does nothold in the case of electricity prices.

Electricity prices can jump more than once in any one day, andmultiple jumps can fool the test by inflating

the bipower variation (BVt ) estimate. An example from North America is 25 February 2003in ONT (the

second plot in the first column in Figure 5) which is not classified as a jump day even with the lag length

set toi = 5.

VI. Robustness

In this section, I repeat the calculations of realized volatility and the jump detection tests for (i) hourly

Austrailian data, and (ii) five-minute NEISO data.

A. Hourly Australian Data

I average half-hourly Australian data across each hour, thereby producing data at the hourly frequency. I

then compute realized volatility and jump frequency estimates from this hourly Australian data. The results

(based on demeaning scheme B) are presented in Table 5.

The realized volatilities for Australian markets presented in Panel A of Table 5 are less than the corre-

sponding results from Panel B of Table 2. Aggregating the data up to the hourly frequency reduces realized

volatility by approximately 10% to 15%. Based upon hourly data, both PJM and ONT are more volatile

than any of the Australian markets. Based upon hourly data, both NSW and SNOWY are less volatile than

any of the North American markets.

From Panel B of Table 5, using hourly data also reduces the jump frequency estimates for the Australian

markets, by approximately 30% compared to the corresponding results in Panel B of Table 4. Based on

these results, it is tempting to conclude that North American markets (except for PJM) are just as prone to
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price spikes as Australian markets. However, such a conclusion is premature given the poor performance

of the jump detection test. Still, these results dramatically illustrate the effects of using average price data.

B. Five Minute NEISO Data

As a further illustration of the importance of averaging, I recompute the realized volatility estimates and

jump frequencies for one year (2003) in NEISO using data sampled at the five minute frequency.22 In order

to save space, I do not report the results in a table. Focusingagain on demeaning scheme B, the realized

volatility estimate is 2,783%. Based upon hourly data, the realized volatility for 2003 is 1,508%. I also

estimate the jump frequency at lag lengths ranging fromi = 0 to i = 5. The estimates of the jump frequency

exceed 89% in every case.

VII. Implications for Modelling Electricity Prices

The fact that daily electricity prices are averages has implications for the model fitting exercises common

in the literature. Many authors, for example Guthrie and Videbeck (2002), Hadsell, Marathe, and Shawky

(2004), and Hlouskova, Kossmeier, Obersteiner, and Schnabl (2005), point out the need to develop good

models of electricity spot prices. Much of the existing electricity literature attempts to fit stochastic models

to electricity prices. In almost every case, the data used toestimate the model parameters and to compare

competing models are daily average prices. Examples include Deng (2000), Goto and Karolyi (2004),

Hadsell, Marathe, and Shawky (2004), Knittel and Roberts (2005), Cartea and Figueroa (2005), Mount,

Ning, and Cai (2006), and Geman and Roncoroni (2006).23

22The five minute price data are also available on the NEISO website. I average the five minute data across hours to confirm
that the hourly data are indeed built from the five minute data.

23Two exceptions are Karakatsani and Bunn (2008) who use half-hourly prices from the UK, and Pirrong and Jermakyan
(2008) who use hourly prices from PJM. Higgs and Worthington(2008) recognize the loss of information caused by the use of
daily average prices, but choose to use daily data anyway dueto the “ ... unwieldiness of intraday information.”
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Power plants are call options written on the “spark spread,”the spread between (i) the cost of fuel

required to generate electricity and (ii) the sales price ofelectricity. If the spot price of electricity exceeds

the cost to generate the electricity, then the option is in-the-money and will be exercised. That is, the owner

of the power plant will purchase fuel, convert the fuel into electricity, and sell the resulting electricity. If

the cost to generate electricity exceeds the spot price of electricity, then the option is out-of-the-money and

the power plant will not operate.

Flexible power generation technologies, such as natural gas-fired combustion turbines, can respond to

price changes at the intradaily level. The owner of such a flexible plant effectively owns a collection of

spark spread call options. Foe example, the owner of a gas turbine in PJM has, for each day, 24 hourly

spark spread call options.24

Baseload technologies, such as coal-fired and nuclear powerplants, are not designed to respond to

intradaily prices. These technologies are effectively Asian spark spread options, i.e., they settle against

the average daily (or weekly) price. Similarly, many power purchase agreements (financial contracts) are

settled based on average prices. It is well known that Asian options are worth less than collections of

otherwise similar individual options.25 The reason is because the average price is less volatile thanthe

prices from which the average is calculated (i.e.,σL < σH) and option value increases in volatility.

In practical applications, the model should be fitted to dataobserved at the frequency that is relevant

to the problem at hand. Fitting a model to daily average prices is a reasonable and practical exercise if the

goal is to value baseload power plants and PPAs which settle against daily average prices. However, such

a model must necessarily undervalue technologies which respond to intradaily prices.

Consider the simple example an option with a strike price is $50, and a day for which the price is $40

for hours 1-12 and $60 for hours 13-24. An hourly option wouldbe exercised in hours 13-24 and earn $10

24Operational constraints (frictions) such as minimum up- and down-times, ramp rates, startup and shutdown costs, etc.,reduce
the frequency with which these options may be exercised.

25See, for example, the textbook treatment of McDonald (2006)on pp.444-449.
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per hour, or $120. An Asian option which settles against the daily average price would be at-the-money

and earn $0.

Further, because available electricity prices are averages, the search for the “correct” stochastic model

for electricity prices depends crucially on the frequency at which the data is observed. Even if a particular

model cannot be rejected when fit to daily average prices, it cannot be said to be correctly specified relative

to the underlying data generating process. This is an important point that has not been emphasized in the

literature.

VIII. Conclusions

This paper reports estimates of realized volatility and thefrequency of price spikes for eight wholesale

electricity markets - five in Australia, one in Canada, and two in the United States. The estimates of

daily realized volatility, expressed in annualized standard deviation form, range from 1,500% to 3,000%.

These estimates are much larger than previous estimates reported in the literature, which range from ap-

proximately 300% to 900%. Further, previous results suggest that Australian electricity markets are more

volatile than markets elsewhere. Using high frequency data, I show that electricity markets in North Amer-

ica are, on average, just as volatile as markets in Australia. The reason for the differences is the observation

frequency of the data. Previous results are based on daily data, while the results reported here are based on

intradaily data.

I present evidence that jump detection techniques based on the difference between realized volatility

and bipower variation are not reliable when applied to electricity prices because (i) reversals in electricity

prices induce negative serial correlation in returns, and (ii) electricity prices can jump more than once in

a single day. Adjusting the lag length in the calculation of bipower variation can overcome negative serial

correlation. One potential avenue for future research is todevelop modified jump detection statistics to

account for the unique properties of electricity prices.
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Daily electricity prices are averages of intradaily prices. Model fitting exercises that use data sampled

at daily (or lower) frequencies, while useful in certain applications, can never lead to the correct specifi-

cation for the underlying data generating mechanism. Similarly, hourly (half-hourly) electricity prices are

averages of intrahourly prices, so fitting models to hourly data suffers from the same problem. The lesson

is that the modelling exercise should be based upon data observed at a frequency that corresponds to the

particular problem at hand.
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TABLE 1: Hourly Price and Return Summary Statistics

The table summarizes wholesale electricity spot prices andreturns. Price data have units of dollars per megawatthour ($/MWh). The return data
are in percent. NEISO is New England, PJM is the eastern hub ofPennsylvania-New Jersey-Maryland, and ONT is Ontario, Canada. The NEISO
data cover the period May 1999 through February 2008. The PJMdata cover the period June 2000 through May 2007. The ONT datacover the
period May 2002 through April 2008. The raw data from the North American markets is observed at the hourly frequency. NSW is New South
Wales, QLD is Queensland, SA is South Australia, SNOWY is theSnowy Mountains, and VIC is Victoria. The Australian data cover the period
January 1999 through April 2008. The raw data from the Australian markets is observed at the half-hourly frequency.

Panel A: Prices

North America Australia
NEISO PJM ONT NSW QLD SA SNOWY VIC

NOBS 76,784 60,643 52,377 163,488 163,505 163,351 163,472 162,819
Mean $52.11 $45.37 $53.20 $37.26 $39.62 $45.98 $35.12 $34.55
Stdev $33.62 $38.37 $33.07 $188.10 $187.55 $222.84 $134.17 $126.92
Skew 10.40 7.70 5.11 35.19 29.45 32.56 36.81 41.02
Kurt 251.5 148.7 77.6 1,435 1,068 1,265 1,606 2,230
Min $5.01 $5.00 $5.00 $5.00 $5.09 $5.00 $5.10 $5.00
Max $1,003 $1,020 $1,028 $9,936 $9,921 $10,000 $7,716 $10,000

Panel B: Returns

North America Australia
NEISO PJM ONT NSW QLD SA SNOWY VIC

NOBS 76,543 60,308 52,247 163,452 163,458 163,268 163,424 163,590
Mean -0.101% -0.025% -0.005% 0.001% 0.007% -0.003% 0.002% -0.005%
Stdev 20.87% 34.24% 27.21% 19.02% 25.98% 26.32% 18.44% 20.08%
Skew 0.193 0.068 0.047 0.479 0.335 -0.525 0.635 0.350
Kurt 17.48 5.17 9.43 109.5 76.93 80.95 92.38 78.84
Min -281.5% -300.8% -265.8% -572.3% -530.9% -610.0% -481.3% -487.9%
Max 331.8% 202.5% 290.4% 544.7% 591.4% 597.1% 496.5% 496.6%
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TABLE 2: Daily Realized Volatility Summary Statistics

The table summarizes the distributions of daily realized volatility (
√

RVt), expressed in annualized percentage terms, assuming a 365day year,
for each of the four demeaning schemes detailed in Section III. NEISO is New England, PJM is the eastern hub of Pennsylvania-New Jersey-
Maryland, and ONT is Ontario, Canada. The NEISO data cover the period May 1999 through February 2008. The PJM data cover the period June
2000 through May 2007. The ONT data cover the period May 2002 through April 2008. NSW is New South Wales, QLD is Queensland,SA is
South Australia, SNOWY is the Snowy Mountains, and VIC is Victoria. The Australian data cover the period January 1999 through April 2008.

Panel A: Raw Returns

North America Australia
NEISO PJM ONT NSW QLD SA SNOWY VIC

NOBS 3,000 2,270 2,100 3,367 3,356 3,324 3,359 3,210
Mean 1,709% 3,066% 2,294% 2,054% 2,519% 2,721% 2,026% 2,238%
Median 1,522% 2,988% 2,142% 1,727% 1,733% 2,008% 1,731% 1,921%
Stdev 849% 941% 977% 1,463% 2,311% 2,156% 1,329% 1,415%
Skew 2.18 0.51 1.48 3.94 2.90 2.78 3.67 3.56
Kurt 10.53 3.53 8.25 25.68 13.80 12.38 21.46 20.08
Min 356% 497% 227% 326% 337% 576% 362% 470%
Max 7,891% 6,801% 10,290% 20,344% 21,850% 18,836% 13,290% 14,306%

Panel B: Demeaned Returns

North America Australia
NEISO PJM ONT NSW QLD SA SNOWY VIC

NOBS 3,000 2,270 2,100 3,367 3,356 3,324 3,359 3,210
Mean 1,516% 2,712% 2,087% 1,675% 2,215% 2,394% 1,638% 1,785%
Median 1,305% 2,617% 1,928% 1,321% 1,381% 1,616% 1,305% 1,417%
Stdev 846% 901% 968% 1,403% 2,305% 2,215% 1,283% 1,397%
Skew 2.32 0.67 1.65 4.42 3.02 2.79 4.05 3.90
Kurt 11.25 3.61 8.88 30.47 14.48 12.33 24.52 22.64
Min 321% 709% 411% 392% 351% 520% 397% 412%
Max 7,976% 6,571% 10,141% 20,342% 21,698% 18,816% 13,237% 14,248%
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TABLE 2: Daily Realized Volatility Summary Statistics - continued

The table summarizes the distributions of daily realized volatility (
√

RVt), expressed in annualized percentage terms, assuming a 365day year,
for each of the four demeaning schemes detailed in Section III. NEISO is New England, PJM is the eastern hub of Pennsylvania-New Jersey-
Maryland, and ONT is Ontario, Canada. The NEISO data cover the period May 1999 through February 2008. The PJM data cover the period June
2000 through May 2007. The ONT data cover the period May 2002 through April 2008. NSW is New South Wales, QLD is Queensland,SA is
South Australia, SNOWY is the Snowy Mountains, and VIC is Victoria. The Australian data cover the period January 1999 through April 2008.

Panel C: CGC Drift Specification

North America Australia
NEISO PJM ONT NSW QLD SA SNOWY VIC

NOBS 3,000 2,270 2,100 3,367 3,356 3,324 3,359 3,210
Mean 1,632% 2,852% 2,105% 2,015% 2,480% 2,643% 1,986% 2,183%
Median 1,441% 2,761% 1,942% 1,691% 1,713% 1,959% 1,686% 1,869%
Stdev 790% 827% 877% 1,417% 2,191% 2,034% 1,287% 1,366%
Skew 2.26 0.68 1.68 3.94 2.94 2.80 3.66 3.57
Kurt 10.96 3.49 8.92 25.48 14.04 12.48 21.28 20.02
Min 487% 981% 521% 435% 489% 729% 442% 513%
Max 7,488% 6,251% 9,439% 19,655% 21,115% 17,701% 12,828% 13,785%

Panel D: CGC Drift Specification with Hourly Dummies

North America Australia
NEISO PJM ONT NSW QLD SA SNOWY VIC

NOBS 3,000 2,270 2,100 3,367 3,356 3,324 3,359 3,210
Mean 1,564% 2,746% 2,062% 1,911% 2,391% 2,514% 1,871% 2,040%
Median 1,363% 2,636% 1,889% 1,570% 1,596% 1,789% 1,554% 1,701%
Stdev 796% 810% 881% 1,383% 2,175% 2,053% 1,263% 1,356%
Skew 2.34 0.77 1.74 4.20 3.04 2.83 3.87 3.73
Kurt 11.31 3.66 9.22 27.90 14.68 12.62 22.87 21.25
Min 466% 919% 518% 660% 705% 697% 656% 719%
Max 7,486% 6,381% 9,523% 19,683% 21,109% 17,690% 12,913% 13,870%
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TABLE 3: Monthly Realized Volatility Summary Statistics

The table summarizes the distributions of monthly volatility. Low frequency volatility (σL) is the standard deviation of logarithmic daily price
changes. High frequency volatility (σH) is the square root of monthly realized variance. Both estimates of monthly volatility are expressed in
annualized percentage terms, assuming a 365 day year.ACm is the autocorrelation at lagm months. Panel A presents data for North American
wholesale electricity spot markets. NEISO is New England, PJM is the eastern hub of Pennsylvania-New Jersey-Maryland,and ONT is Ontario,
Canada. The NEISO data cover the period May 1999 through February 2008. The PJM data cover the period June 2000 through May2007. The
ONT data cover the period May 2002 through April 2008. I demean raw returns by month of year and day of week (scheme B).

Panel A: North America
NEISO PJM ONT

σL σH σL σH σL σH

NOBS 106 106 84 84 72 72

Mean 347% 1,669% 561% 2,785% 428% 2,267
Stdev 184% 469% 161% 497% 123% 625.9
Skew 3.22 0.97 1.73 0.84 1.69 1.37
Kurt 15.91 3.96 7.32 3.52 9.88 5.74
Min 156% 745% 331% 1,976% 186% 1,331
Max 1,390% 3,131% 1,289% 4,346% 1,037% 4,638

AC1 0.363 0.474 0.440 0.668 0.383 0.628
AC2 -0.054 0.237 0.297 0.384 0.201 0.349
AC3 -0.159 0.198 0.020 0.212 0.205 0.243
AC6 -0.046 0.037 0.069 -0.097 0.133 -0.010
AC12 0.114 -0.045 0.201 -0.073 -0.053 -0.111

ρ 0.414 0.189 0.585
Spearman 0.542*** 0.253** 0.573***
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TABLE 3: Monthly Realized Volatility Summary Statistics - C ontinued

The table summarizes the distributions of monthly volatility. Low frequency volatility (σL) is the standard deviation of logarithmic daily price
changes. High frequency volatility (σH) is the square root of monthly realized variance. Both estimates of monthly volatility are expressed in
annualized percentage terms, assuming a 365 day year.ACm is the autocorrelation at lagmmonths. Panel B presents data for Australian wholesale
electricity spot markets. NSW is New South Wales, QLD is Queensland, SA is South Australia, SNOWY is the Snowy Mountains,and VIC is
Victoria. The Australian data cover the period January 1999through April 2008. I demean raw returns by month of year and day of week (scheme
B).

Panel B: Australia
NSW QLD SA SNOWY VIC

σL σH σL σH σL σH σL σH σL σH

NOBS 112 112 112 112 112 112 112 112 112 112

Mean 656% 1,994% 779% 2,828% 776% 2,988% 559% 1,903% 607% 2,097%
Stdev 473% 894% 478% 1,490% 496% 1,302% 374% 838% 394% 844%
Skew 1.16 1.26 0.80 0.82 1.29 0.57 1.10 1.15 1.48 1.14
Kurt 3.49 4.47 2.96 2.82 4.13 2.39 3.28 3.90 4.80 3.78
Min 135% 850% 151% 862% 167% 1,048% 144% 869% 177% 933%
Max 2,082% 5,137% 2,203% 6,827% 2,413% 6,195% 1,747% 4,574% 1,889% 4,872%

AC1 0.346 0.354 0.219 0.345 0.458 0.534 0.274 0.393 0.198 0.270
AC2 0.107 0.155 -0.007 0.301 0.280 0.366 0.006 0.140 0.170 0.114
AC3 -0.139 -0.050 -0.109 0.204 0.047 0.297 -0.268 -0.078 0.067 0.076
AC6 0.006 0.082 -0.102 0.163 -0.129 0.172 0.085 0.176 0.013 -0.026
AC12 0.032 -0.096 0.048 0.089 0.268 0.126 -0.052 -0.014 0.014 -0.005

ρ 0.698 0.746 0.750 0.771 0.754
Spearman 0.785*** 0.814*** 0.830*** 0.827*** 0.757***
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TABLE 4: Jump Frequencies

The table summarizes jump frequencies, by market, for each of the four demeaning schemes detailed in Section III as a function of the lag length
i in the calculation ofBVt andTQt , equations (4) and (8) in the text. A day is classified as a jumpday if the ratio statisticZt(∆), equation (7) in
the text, exceeds the value of the inverse cumulative standard normal distribution evaluated at 0.99. That is, the day is classified as a jump day
if IZt(∆)>Φ0.99

takes a value of one, whereIx>y is the indicator function which takes a value of one ifx > y, andΦ0.99 is the value of the inverse
cumulative standard normal distribution evaluated at 0.99. NEISO is New England, PJM is the eastern hub of Pennsylvania-New Jersey-Maryland,
and ONT is Ontario, Canada. The NEISO data cover the period May 1999 through February 2008. The PJM data cover the period June 2000
through May 2007. The ONT data cover the period May 2002 through April 2008. NSW is New South Wales, QLD is Queensland, SA isSouth
Australia, SNOWY is the Snowy Mountains, and VIC is Victoria. The Australian data cover the period January 1999 through April 2008.

Panel A: Raw Returns

North America Australia
Lag (i) NEISO PJM ONT NSW QLD SA SNOWY VIC
0 0.065 0.036 0.088 0.044 0.054 0.100 0.046 0.039
1 0.175 0.096 0.207 0.151 0.183 0.224 0.153 0.141
2 0.257 0.142 0.285 0.234 0.270 0.342 0.242 0.251
3 0.286 0.157 0.323 0.405 0.429 0.483 0.425 0.430
4 0.321 0.153 0.337 0.514 0.527 0.557 0.519 0.528
5 0.358 0.178 0.349 0.537 0.572 0.566 0.532 0.547

Panel B: Demeaned Returns

North America Australia
Lag (i) NEISO PJM ONT NSW QLD SA SNOWY VIC
0 0.075 0.031 0.097 0.079 0.075 0.134 0.081 0.071
1 0.165 0.078 0.186 0.158 0.188 0.259 0.160 0.177
2 0.241 0.128 0.271 0.247 0.298 0.385 0.257 0.290
3 0.289 0.147 0.297 0.357 0.389 0.472 0.364 0.388
4 0.313 0.153 0.324 0.423 0.471 0.527 0.431 0.446
5 0.357 0.185 0.333 0.440 0.500 0.545 0.447 0.470
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TABLE 4: Jump Frequencies - continued

The table summarizes jump frequencies, by market, for each of the four demeaning schemes detailed in Section III as a function of the lag length
i in the calculation ofBVt andTQt , equations (4) and (8) in the text. A day is classified as a jumpday if the ratio statisticZt(∆), equation (7) in
the text, exceeds the value of the inverse cumulative standard normal distribution evaluated at 0.99. That is, the day is classified as a jump day
if IZt(∆)>Φ0.99

takes a value of one, whereIx>y is the indicator function which takes a value of one ifx > y, andΦ0.99 is the value of the inverse
cumulative standard normal distribution evaluated at 0.99. NEISO is New England, PJM is the eastern hub of Pennsylvania-New Jersey-Maryland,
and ONT is Ontario, Canada. The NEISO data cover the period May 1999 through February 2008. The PJM data cover the period June 2000
through May 2007. The ONT data cover the period May 2002 through April 2008. NSW is New South Wales, QLD is Queensland, SA isSouth
Australia, SNOWY is the Snowy Mountains, and VIC is Victoria. The Australian data cover the period January 1999 through April 2008.

Panel C: CGC Drift Specification

North America Australia
Lag (i) NEISO PJM ONT NSW QLD SA SNOWY VIC
0 0.049 0.023 0.046 0.037 0.044 0.063 0.035 0.034
1 0.115 0.041 0.103 0.114 0.118 0.156 0.112 0.111
2 0.155 0.056 0.140 0.200 0.199 0.265 0.213 0.239
3 0.180 0.061 0.157 0.323 0.287 0.334 0.337 0.350
4 0.208 0.065 0.166 0.387 0.330 0.382 0.392 0.415
5 0.259 0.090 0.185 0.383 0.349 0.378 0.392 0.406

Panel D: CGC Drift Specification with Hourly Dummies

North America Australia
Lag (i) NEISO PJM ONT NSW QLD SA SNOWY VIC
0 0.052 0.022 0.051 0.040 0.044 0.069 0.040 0.043
1 0.115 0.039 0.107 0.124 0.132 0.157 0.124 0.137
2 0.166 0.059 0.153 0.235 0.231 0.263 0.240 0.259
3 0.194 0.070 0.170 0.347 0.299 0.337 0.362 0.382
4 0.219 0.070 0.172 0.375 0.343 0.381 0.376 0.408
5 0.244 0.093 0.187 0.415 0.375 0.382 0.419 0.440

39



TABLE 5: Daily Realized Volatility Summary Statistics using Hourly Data

The table summarizes (Panel A) the distributions of daily realized volatility (
√

RVt), expressed in annualized percentage terms, assuming a 365
day year, and (Panel B) jump frequency estimates. The half-hourly Australian data have been aggregated up to hourly data, i.e., averaged within
each hour. NEISO is New England, PJM is the eastern hub of Pennsylvania-New Jersey-Maryland, and ONT is Ontario, Canada.The NEISO
data cover the period May 1999 through February 2008. The PJMdata cover the period June 2000 through May 2007. The ONT datacover the
period May 2002 through April 2008. NSW is New South Wales, QLD is Queensland, SA is South Australia, SNOWY is the Snowy Mountains,
and VIC is Victoria. The Australian data cover the period January 1999 through April 2008. I demean raw returns by month ofyear, day of week,
and hour of day (scheme B).

Panel A: Realized Volatility
√

RVt

North America Australia
NEISO PJM ONT NSW QLD SA SNOWY VIC

NOBS 3,000 2,270 2,100 3,379 3,371 3,349 3,378 3,252
Mean 1,516% 2,712% 2,087% 1,511% 1,893% 2,010% 1,456% 1,558%
Median 1,305% 2,617% 1,928% 1,171% 1,204% 1,376% 1,142% 1,229%
Stdev ,846% ,901% ,968% 1,348% 1,886% 1,849% 1,219% 1,259%
Skew 2.32 0.67 1.65 4.44 2.92 2.90 4.23 4.12
Kurt 11.25 3.61 8.88 28.59 13.45 12.96 25.24 24.09
Min 321% 709% 411% 357% 314% 367% 337% 340%
Max 7,976% 6,571% 10,141% 17,753% 17,440% 14,349% 11,283% 11,730%

Panel B: Jump Frequencies

North America Australia
Lag (i) NEISO PJM ONT NSW QLD SA SNOWY VIC
0 0.075 0.031 0.097 0.046 0.060 0.049 0.046 0.048
1 0.165 0.078 0.186 0.086 0.124 0.148 0.090 0.105
2 0.241 0.128 0.271 0.180 0.236 0.228 0.169 0.190
3 0.289 0.147 0.297 0.210 0.300 0.261 0.205 0.212
4 0.313 0.153 0.324 0.249 0.342 0.298 0.245 0.256
5 0.357 0.185 0.333 0.301 0.389 0.338 0.297 0.301
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FIGURE 1: Half-Hourly Prices and Returns for 19 March 2003 in South Australia (SA)

The figure plots half-hourly spot prices (solid line, left axis) and returns (dashed line, right axis) for a single day, 19March 2003, in the South
Australia electricity market. The figure illustrates the importance of increasing the lag length in the calculation of bipower variationBVt (see
equation (4) in the test) for the case of electricity prices.Because an upward price jump in electricity markets inevitably is followed by a reversal,
or downward jump, setting the lag length equal toi = 0 inflates the value ofBVt and causes the jump detection statisticZt (see equation (7) in the
test) to underreject the null of no jumps. Withi = 1 this day is not classified as a jump day.
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FIGURE 2: Mean Daily Realized Volatility (
√

RVt)

The figure plots mean daily realized volatility
√

RVt , expressed as an annualized standard deviation, for each ofthe demeaning schemes defined
in Section III in the text. NEISO is New England, PJM is the eastern hub of Pennsylvania-New Jersey-Maryland, and ONT is Ontario, Canada.
The NEISO data cover the period May 1999 through February 2008. The PJM data cover the period June 2000 through May 2007. The ONT data
cover the period May 2002 through April 2008. NSW is New SouthWales, QLD is Queensland, SA is South Australia, SNOWY is theSnowy
Mountains, and VIC is Victoria. The Australian data cover the period January 1999 through April 2008.
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FIGURE 3: Monthly Electricity Volatility

The figure plots the time series of two estimates of monthly volatility. Low frequency volatility (σL, solid
line) is the standard deviation of logarithmic daily price changes. high frequency volatility (σH , dashed
line) is the square root of monthly realized variance. Both estimates of monthly volatility are expressed in
annualized percentage terms, assuming a 365 day year. I demean raw returns by month of year and day of
week (scheme B).
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FIGURE 4: Jump Frequencies

The figure plots estimated jump frequencies for each of the demeaning schemes defined in Section III
in the text and for lag lengthsi = 0 throughi = 5. NEISO is New England, PJM is the eastern hub of
Pennsylvania-New Jersey-Maryland, and ONT is Ontario, Canada. The NEISO data cover the period May
1999 through February 2008. The PJM data cover the period June 2000 through May 2007. The ONT
data cover the period May 2002 through April 2008. NSW is New South Wales, QLD is Queensland, SA
is South Australia, SNOWY is the Snowy Mountains, and VIC is Victoria. The Australian data cover the
period January 1999 through April 2008.
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FIGURE 5: Non-Jump Days

The figure plots spot prices and (raw) returns for days classified as not having a jump. Spot prices (solid
line) are on the left axis and returns (dashed line) are on theright axis. The jump detection is based upon
demeaning scheme C and lag lengthi = 1.
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