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Abstract

This paper analyzes the interactions between vertical integration and (wholesale)

spot, forward and retail markets in risk management. We develop an equilibrium

model that �ts electricity markets well. We point out that vertical integration and

forward hedging are two separate levers for demand and spot price risk diversi�cation.

We show that they are imperfect substitutes as to their impact on retail prices and

agents’ utility because the asymmetry between upstream and downstream segments.

While agents always use the forward market, vertical integration may not arise. In

addition, in presence of highly risk averse downstream agents, vertical integration may

be a better way to diversify risk than spot, forward and retail markets. We illustrate

our analysis with data from the French electricity market.

1 Introduction

Corporate risk management has long been viewed as a prominent motive for vertical inte-

gration 1. In particular, the (supply or demand) insurance rationale for vertical integration

�We would like to thank Enrico Bi�s, Denis Gromb, Michel Habib, Xuewen Liu, Fr�ed�eric Loss, Antonio

Mello, Jean Tirole, Robert Wilson and seminar participants at Imperial College London, the University

of Durham, the University of Lugano, l’Universit�e Libre de Bruxelles, the University of Toulouse, the

University Bordeaux Montesquieu and the University of Paris-Dauphine for helpful comments. The paper

also bene�ted from numerous discussions with J�erôme Wirth and Cyrille Strugarek at ED R&D. The

authors thank the Finance for Energy Markets research center for �nancial support.
1The abundant literature that has developed in the past few decades tends to sees vertical integration

as a response to problems caused by contractual incompleteness (Williamson (1971), Grossman and Hart

(1986))), for example as ways to acquire valuable private information about the production process (Arrow
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is the one that managers cite as the most important (Bolton and Whinston, 1993). In

the 1970s, for example, oil re�ning industries produced up to 90% of their crude oil needs

in order to avoid the signi�cant costs that a stop in deliveries would entail (Teece, 1976).

More generally, uncertainty in demand (Carlton (1979)), lack of market 
exibility and risk

aversion may all provide rationale for vertical integration (Hendrikse and Peters (1989),

Perry (1989), Emons (1996), Sekkat (2006)). Of course there are other means of managing

risk, such as operational hedging and �nancial instruments that have developed tremen-

dously in the past few decades (Hull, 2003). In this paper, we examine the extent to which

the development of the �nancial instruments often used for hedging purposes a�ects the in-

centive for vertical integration and the way industry structure a�ects the �nancial markets

aforementioned and their prices. Our objective is to clarify and to quantify the e�ects of

vertical integration and forward markets in risk management and their interactions. These

issues, which are of particular importance in commodity and energy markets and which

are subject to ongoing debate in regulatory reforms in these markets, are analyzed with a

model that �ts electricity markets well, and illustrated with French electricity data.

Speci�cally, we study retail markets, wholesale spot markets and forward markets, and

the relationship between equilibrium prices on these markets and vertical integration. To

focus on risk, we abstract from considerations related to strategic behavior or market

power, and instead we assume price-taking �rms that disregard any in
uence they could

have on the equilibrium price or on the other agents’ decisions 2. We develop a two-date

equilibrium model of retail, (wholesale) spot and forward markets for a non-storable good.

Non-storability prevents �rms from bene�ting from yet another possibility of managing

risk, which in our model is a central feature of both vertical integration and forward

markets. At an initial date, downstream �rms (or downstream subsidiaries of integrated

�rms) choose the number of accounts to open, which in a market of �xed size boils down

to choosing their retail market shares, and forward positions under demand (and price)

uncertainty. After uncertainty is realized, producers produce the good, sell it to retailers

on the wholesale spot market, and retailers sell the good to consumers. Since the good

(1975)), to avoid rationing (Teece (1976), Green (1986), Bolton and Whinston (1993)), to weaken rivals

(Bolton and Whinston (1993), Rey and Tirole (2006)) or as a bargaining tool with vertically-related

segments (Chemla (2003)). On vertical integration, see also, among many others, Carlton (1979), Perry

(1989), Joskow (2005), Lafontaine and Slade (2007) and Sekkat (2006).
2We also ignore other forms of vertical restraints or pro�t sharing rules.
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is non-storable, no production can occur at the initial date to serve the market later on.

Agents have preferences over random pro�ts de�ned by a mean-variance utility function,

which can be thought of as a reduced form of traditional motives for risk management

policy 3.

We derive the equilibrium prices and exchanged quantities on the three markets in closed

forms. We show that vertical integration and forward hedging are two mechanisms that

are substitutes in the way they achieve risk diversi�cation. Speci�cally, the reduction in

risk achieved through either means encourages �rms to open more client accounts at the

initial date, thus leading to greater supply and lower retail prices after generation occurs.

Hence, their �rst two e�ects are to decrease the retail price and to enable agents with low

generation capacity to obtain larger market shares. In addition, they both tend to decrease

downstream �rms’ utility when upstream �rms are only partially integrated: Because of

industry-wide risk diversi�cation, downstream �rms face lower retail prices, which reduces

their pro�t.

We further show that they are imperfect substitute risk management mechanisms be-

cause of a signi�cant asymmetry between upstream and downstream segments: Retailers

have to open accounts and, hence, choose their market shares under uncertainty, while pro-

ducers choose production after demand uncertainty is revealed. Therefore, downstream

�rms are more exposed to demand risk. First, vertical integration eliminates this asym-

metry while forward hedging does not. Second, vertical integration is more robust to high

risk aversion than forward markets. Third, vertical integration can also increase down-

stream �rms’ utility provided that they have su�ciently high risk aversion. Fourth, a

non-integrated economy can be a stable equilibrium whereas a situation where no agents

trade forward contracts is almost never a stable equilibrium. Finally, we prove that our

conclusions are robust to the inelasticity of demand to retail price.

3 Mean-variance utility functions are widely used in asset pricing. We do not specify the market

frictions that may prompt agents to be eager to hedge risk. In the absence of market frictions such as

taxes or bankruptcy costs, �rms may be indi�erent about their hedging policy. See, for instance, Smith and

Stulz (1984), Froot, Scharfstein and Stein (1993) and Grinblatt and Titman (2002). This corporate risk

management literature (see also Mello and Ruckes (2007)) also sometimes relies on risk-neutral settings

with constraints or frictions in order to work with implied risk aversion, but this makes it more di�cult

to work with fully-
edged asset price equilibria
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Apart from our contribution to the risk management features of vertical integration,

our paper is related to Allaz’s (1992) and Bessembinder and Lemmon’s (2002) equilibrium

models of forward markets. We add a retail activity to their settings, and we consider

jointly forward hedging and vertical integration as tools to manage risk. We also con-

tribute to the recent literature on risk management through market versus non-market

mechanisms. While markets enable investors to diversify easily (Doherty and Schlesinger

(2002) and they are less sensitive to moral hazard (Doherty (1997)), non-market mecha-

nisms such as reinsurance companies keep an important role. In Gibson, Habib and Ziegler

(2007), the importance of non-market mechanisms stems from excessive information gath-

ering from investors in �nancial markets. In our setting, the scope for vertical integration

arises as complementary to hedging, and vertical integration is desirable because of the

asymmetry between downtream and upstream �rms and because of investors’ high levels

of risk aversion.

The paper is organized as follows. We develop our setting and we present the equilibrium

problem in Section 2. We then compare two di�erent environments. First, in Section 3, we

examine the equilibrium and the e�ect of vertical integration in the absence of a forward

market. In Section 4, we derive the equilibrium in the presence of the forward market and

we analyze the e�ect of the forward market and vertical integration on both the industrial

markets and �nancial markets. We then illustrate our results in Section 5 through the

French electricity market. Section 6 discusses further empirical predictions. Section 7.

Appendix A contains the proofs and Appendix B shows that our main results remain in

presence of an elastic demand curve.

2 The model

In this section we �rst describe price-taking retail, (wholesale) spot and forward markets

for a non-storable good. Then, we de�ne an equilibrium on these markets.
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2.1 The markets

We consider a set P of producers that produce a homogenous, non-storable good that they

can sell to a set R of retailers. After sourcing on the wholesale markets, retailers compete

in a market for consumers whose demand D is random. Demand D is described by a

random variable on a probability space (
; F ; P). For simplicity, we assume throughout

most of the paper that demand is inelastic. Section 5 illustrates that this assumption

is broadly consistent with electricity markets. However, Section B shows that our main

results obtain when demand is allowed to be elastic. We assume that all �rms are price-

takers, i.e. all agents compete disregarding any in
uence they could have on equilibrium

prices, or on the other agents’ behavior 4.

For simplicity, all agents have access to wholesale markets. All agents are allowed to

trade, including speculative agents that play no role in production or retail segments.

We denote by K the set of all agents: Producers, retailers and traders. Agents are not

necessarily specialized in a single segment. Hence the subsets P and R of K are possibly

intersecting, leading to four di�erent types of agents:

� Upstream �rms, i.e. producers who produce and sell on the wholesale markets;

� Downstream �rms, i.e. retailers who buy on the wholesale markets and sell goods

to consumers;

� Integrated �rms who produce, trade on the markets and deliver outputs to con-

sumers;

� Traders who speculate on all markets.

Retailers can obtain goods from three sources: Wholesale markets, production if they

are integreated �rms, and forward markets where they agree to buy or sell units of good

at the next date for price q. In particular, forward markets turn out to be linear contracts.

In our setting, vertical integration can be thought of as a pro�t-sharing scheme as

4This enables us to abstract from anti-competitive motives for vertical integration surveyed in Rey and

Tirole (2006).

5



in Rey and Tirole (2006) and Chemla (2003) 5. It is also a mechanism that enables

agents to diversify industry-speci�c risk that will dominate other forms of mergers, and in

particular horizontal integration, in diversifying risk that channels throughout vertically-

related segments.

There are two dates:

� At t = 0, retailers open accounts and thereby commit to supply a �xed number (out

of a publicly known total number) of consumers at a later date. This boils down to

allowing downstream �rms to choose market shares �k 2 [0; 1]; k 2 R. In addition,

agents take forward positions fk, k 2 K (where fk > 0 represents a purchase).

� At t = 1, demand uncertainty is revealed. Agents take positions Sk, k 2 K, on the

wholesale spot market (where Sk > 0 denotes a purchase) and producers also choose

their generation levels Gk; k 2 P. Since the good is non-storable, production can

only occur at that time t = 1 when the demand uncertainty is observed and in which

consumers buy the good 6.

It should be noted that our setting, in which downstream �rms choose the number of

accounts that they open and thereby commit to provide clients with their future demand of

a non-durable good, �ts well with an electricity market. This, combined with risk aversion,

is one mechanism though which �rms bear risk that they may be willing to manage that

also enables us to combine asset pricing, industrial organization and corporate �nance in

our model 7.

At t = 1, the market-clearing constraint requires that demand be satis�ed:

1 =
X

k2R

�k : (2.1)

5In these papers and many of those summarized in Rey and Tirole (2006), vertical integration arises as

a response to contractual incompleteness where output and pro�ts are di�cult to contract upon.
6Our results are robust to equilibrium de�nitions where decisions on the retail and forward markets are

not taken simultaneously.
7Speci�c market frictions with otherwise risk-neutral environments have also widely been and elegantly

used in the economics literature, e.g. in Froot, Scharfstein and Stein (1993) and Mello and Ruckes (2007).

Such settings are better tailored to examine corporate �nance problems without as much emphasis on

market equilibria as we put in this paper
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In addition, generation levels must meet demand D:

D =
X

k2P

Gk : (2.2)

The market-clearing constraints on the wholesale spot and the forward markets can be

written

0 =
X

k2K

Sk : (2.3)

and

0 =
X

k2K

fk : (2.4)

Agent k obtains a total payo� from its activity on the retail, forward and spot markets

(net its production costs):

�k =p�kD1fk2Rg � qfk � wSk � ck (Gk) 1fk2Pg :

where p, w, and q denote the retail price, the wholesale spot price and the forward price,

respectively, and ck is the cost function to producer k 2 P. The cost function is de�ned on

R+, it is continuously di�erentiable, strictly convex, and it satis�es the Inada conditions

c0
k(0+) = 0; c0

k(+1) = +1 .

Non-storability imposes that the net volume of good bought, sold or produced by agent

k at t = 1 is zero:

0 = �kD1fk2Rg � fk � Sk � Gk1fk2Pg ;

This allows us to discard variable Sk and to write:

�k =(p � w)�kD1fk2Rg + (w � q)fk + (wGk � ck (Gk)) 1fk2Pg :

The payo� has three possible ingredients: The payo� to a retailer that satis�es demand

�kD at retail price p by sourcing on the wholesale spot market at price w; the payo� to

a trader buying a volume fk on the forward market at price q and selling it on the spot

market at price w; and the pro�t made by a producer who generates a volume Gk at cost

ck(Gk) and sells it on the spot market at price w.
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We further assume that agent k’s preferences are described by a mean-variance utility

function. The risk aversion coe�cient �k can also be interpreted as the cost due to frictions

that are necessary for �rms to care about corporate risk management, such as bankruptcy

costs and lost tax shields (Grinblatt and Titman, 2002, Chapter 21, Smith and Stulz,

1984) 8. The utility function is denoted:9

MV�k
[�] := E[�] � �kVar[�] :

2.2 Spot market equilibrium

We proceed by backward induction and we start our analysis by determining the spot

market equilibrium at t = 1. At that time, when they enter the spot market, agents know

the realization of demand uncertainty D, and decisions on the retail and forward markets

have already been made. The outcome turns out to be independent of any decision taken

at time t = 0. Producer k’s generation payo�, wGk � ck(Gk), leads to an equilibrium spot

price:

w� = C 0(D); G�
k = (c0

k)�1(w�) ; (2.5)

where the superscript �1 denotes the inverse function, and the aggregate cost function C

is de�ned as

C(x) :=
X

k2P

ck � (c0
k)�1 �

 

X

k2P

(c0
k)�1

!�1

(x) :

Hence, C 0(x) =
�
P

k2P(c0
k)�1

��1
(x), so that the random variable

C(D) =
X

k2P

ck (G�
k(w�))

is the sum of the production costs over the entire upstream industry.

8Debt and non-debt tax shields can be lost when cash 
ows are volatile (Graham, 2000, Grinblatt and

Titman, 2002, Chapter 14). In addition, although bankruptcy costs are often assumed to be a fraction of

�rm value at the time of bankruptcy (Gilson, 1997), cash 
ow volatility is a well-known determinant of

capital structure and is widely perceived as a signi�cant cost of debt (Titman and Wessels, 1988, Frank

and Goyal, 2007).
9Such utility functions are widely used in asset pricing (Elton and Gruber, 1995). Although MV�k

is not monotonic, which implies possibly negative equilibrium prices, it can be seen as a second order

expansion of a monotonic Von Neumann-Morgenstern utility function (Markowitz, 1979).
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In equilibrium upstream �rms produce up to the point where the spot price equals the

marginal cost. This is consistent with both perfectly competitive markets (Green, Mas

Colell, and Whinston, 2005) and regulated industries in which prices are set at marginal

cost by the regulator (La�ont and Tirole, 1993).

The spot market equilibrium only depends on (exogenous) demand D and is therefore

independent of any other equilibrium prior to time t = 1. This results from the non-

storability condition and the inelasticity assumption on D 10.

Note that both the equilibrium spot price w� and the generation payo�

�g
k := (w�G�

k � ck (G�
k)) 1fk2Pg (2.6)

are exogenous random variables, the distribution of which is assumed to be known by all

agents. We can then substitute w� and G�
k for variables w and Gk, and we de�ne the

payo� to agent k as

�k(p; q; �k; fk) := �r
k(p; �k) + �t

k(q; fk) + �g
k ; (2.7)

where �g
k is de�ned in (2.6) and

�r
k(p; �k) := (p � w�)�kD1fk2Rg

�t
k(q; fk) := (w� � q)fk :

Here, �r
k is the net retail payo� derived from supplying a retail demand by sourcing on

the spot market, and �t
k is the net trading pro�t earned by buying fk units of goods on

the forward market and selling them on the spot market. Finally, �g
k is the net generation

payo� obtained by producing Gk and selling it on the spot market 11.

10 Note that this situation is di�erent from Allaz (1992), where the demand elasticity to spot price

implies a dependency of the spot price to forward positions and a reduction of the market power of the

producers.
11Our results obtain with elastic demand as long as the equilibrium spot market depends only on the

retail price. Nonetheless, for the sake of clarity, we carry the bulk of our analysis with inelastic demand

and we address possible generalizations in Section B.
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2.3 Competitive Equilibrium

In order to de�ne an equilibrium, we introduce the following two sets:

A :=

(

(�k)k2K 2 [0; 1]jKj : 8k =2 R; �k = 0 and
X

k2K

�k = 1

)

F :=

(

(fk)k2K 2 R
jKj :

X

k2K

fk = 0

)

:

De�nition 2.1. An equilibrium of the retail-forward equilibrium problem is a quadruple

(p�; q�; ��; f�) 2 R+ � R+ � A � F such that:

(��
k; f�

k ) = argmax
�k;fk

MV�k
[�k (p�; q�; �k; fk)] ; 8k 2 K :

This de�nes a simultaneous competitive equilibrium on both markets. Each agent sub-

mits a supply function that speci�es his position on the forward market and his market

share for each price level. Each agent chooses his supply function taking prices as given.

Then, the auctioneer collects all supply functions and sets prices that ensure market clear-

ing and demand satisfaction 12.

3 Analysis in the absence of a forward market

In this section, we focus on equilibria in the absence of a forward market. We derive the

equilibrium and we analyse the results. In the absence of a forward market, we de�ne the

pro�t function without a forward position:

�0
k(p; �k) := �k(p; 0; �k; 0) = �r

k(p; �k) + �g
k :

In this simpli�ed setting, De�nition 2.1 reduces to:

De�nition 3.1. An equilibrium of the retail equilibrium problem is a pair

(p�; ��) 2 R+ � A such that:

��
k = argmax

�k

MV�k

�

�0
k (p�; �k)

�

; 8k 2 K :

12Our results are robust to alternative de�nitions that allow for sequentiality between investment and

forward and retail markets.
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3.1 Characterization of the equilibrium

Let

�g
I :=

X

k2R\P

�g
k

be the aggregate generation pro�t realized by all integrated �rms, i.e. the �rms that run

both generation and supply units, and let

�r :=
X

k2R

�r
k(p�; ��

k) = (p� � w�)D

be the aggregate retail pro�t to all retailers. We also de�ne

� :=

 

X

k2K

��1
k

!�1

; �R :=

 

X

k2R

��1
k

!�1

; (3.1)

the aggregate risk aversion coe�cients for the set of all agents and for the set of all retailers,

respectively. Parameter ��1
k corresponds to Agent k’s risk tolerance, as de�ned in Gollier

(2004) 13. We only focus on interior equilibria, i.e. equilibria where constraints �� 2 [0; 1]

and p� � 0 are not binding, by discarding cases where some retailers in R have zero market

shares. The equilibrium is then characterized by the following Proposition.

Proposition 3.1. (p�; ��) 2 R
�
+ � int(A) de�nes an equilibrium of the retail problem

without a forward market i�:

��
k =

�R

�k

+
�R

�k

Cov[�r; �g
I ]

Var[�r]
�

Cov[�r; �g
k]

Var[�r]
; (3.2)

and p� solves the second order polynomial equation:

0 = E[(p� � w�)D] � 2�RCov[(p� � w�)D; (p� � w�)D + �g
I ] : (3.3)

Proof. See Appendix A 2

Intuitively, �rm k chooses its market share in order to maximize its expected return while

keeping variance as low as possible. In other words, the market shares have a home-made

risk-management feature. Firm k’s market share increases with its risk tolerance relative to

that of the retail market and with the covariance between the aggregate generation pro�t

13We follow in this Wilson (1979), where an aggregate risk tolerance is de�ned by summing over the risk

tolerances of the syndicate members, as in (3.1).
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realized by integrated �rms and the aggregate retail pro�t relative to the variance of the

aggregate retail pro�t, but it decreases with the covariance between �rm k’s generation

pro�t and the aggregate retail pro�t relative to the variance of the aggregate pro�t. This

is because the lower that covariance, the greater the diversi�cation bene�ts that �rm k

obtains through production. Hence, �rm k can increase its expected pro�t through an

increase in its market share without increasing risk much.

3.2 The retail price

We now examine retail price properties. From Equation (3.3), neither existence nor unique-

ness is granted 14. We argue that, if there exist two solutions, only one is relevant.

The risk-neutral price, i.e. the price when some retailers are risk neutral, boils down to:

p0 =
E[w�D]

E[D]
; (3.4)

Since w� = C 0(D) is a non-decreasing function of D, w� and D are positively correlated,

and the risk neutral retail price is greater than the expected spot price: p0 � E[w�].

When all retailers are risk-averse, we expect the equilibrium retail price to tend to the

risk neutral price when the risk aversion coe�cient of at least one retailer tends to zero.

This leads to the following result

Proposition 3.2. Only one equilibrium retail price can be economically relevant.

Proof. See Appendix A 2

We now examine the impact of vertical integration on the equilibrium retail price.

Proposition 3.3. When �r and �g
I are negatively correlated, the presence of integrated

producers decreases the retail price.

Proof. See Appendix A 2

The correlation between �r and �g
I tends to be negative. Since w� = C 0(D), pro�t �g

k

is an increasing function of D. In contrast, the retail pro�t �r = (p� � w�)D is likely to

14 This is a common feature in such mean-variance settings.
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be a decreasing function of D: Since p� is �xed while w� increases with D, �r will likely

decrease with D. It should be noted that the higher the slope of C, the more negative we

expect this correlation, and the more powerful the e�ect of vertical integration on retail

prices. In the numerical application in Section 5, this correlation is indeed negative.

Intuitively, vertical integration by at least one �rm leads to a decrease in the retail

price because it facilitates risk diversi�cation between the upstream segment and the

downstream segment. Hence, �rms can charge a retail price that is lower than in the

absence of vertical integration, which their price-taking behavior will prompt them to do.

3.3 Market shares

We turn to the properties of market shares. First, note that when there are some risk-

neutral retailers, the market shares held by the risk averse retailers are given by:

�0
k = �

Cov[�r; �g
k]

Var[�r]
; (3.5)

while the remaining demand is split among the risk neutral retailers. In particular, a risk

averse retailer who has no generation unit ends up with a zero market share.

Notice that, in order to satisfy the non-negativity condition of the market shares, equa-

tion (3.5) implies Cov[�r; �g
k] � 0. This provides us with yet another justi�cation for the

assumption required for vertical integration to have a negative e�ect on the retail price.

In the absence of integrated producers and risk-neutral suppliers, the equilibrium market

shares are given by:

��
k =

�R

�k

:

The market shares are distributed proportionally to the risk tolerances, and only depend

on these parameters.

Proposition 3.4. When �r is negatively correlated with �g
I , vertical integration prompts

a retailer to increase its market share.

If integrated �rms enter the market, the retailers see their equilibrium market shares

13



move to:

��
k =

�R

�k

+
�R

�k

Cov[�r; �g
I ]

Var[�r]
;

while the integrated �rms have market shares:

��
k =

�R

�k

+
�R

�k

Cov[�r; �g
I ]

Var[�r]
�

Cov[�r; �g
k]

Var[�r]
:

The downstream �rms see their market shares decrease while the integrated agents increase

theirs. Indeed, the latter will decrease their risk by increasing their investment in the retail

market. In addition, although the market shares are di�erent from the previous case, the

relative market shares among the set of downstream �rms remain unchanged:

��
i

��
j

=
�j

�i

:

4 Analysis with a forward market

We now examine the setting in the presence of a forward market. We �rst characterize

the equilibria. Then, we analyse retail and forward prices and positions.

4.1 Characterization of the equilibria

Let

�e :=
X

k2K

�k(p�; q�; ��
k; f�

k ) = p�D � C(D) ;

be the aggregate pro�t to both the upstream and the upstream segment, which coincides

with the social surplus in our setting.

We still focus on interior equilibria, when the constraints are not binding. The equilib-

rium with a forward market is characterized by the following proposition.

Proposition 4.1. (p�; q�; ��; f�) 2 R
�
+ � R

�
+ � int(A) � F de�nes an equilibrium of the

retail-forward equilibrium problem i�:

f�
k =

�

�k

Cov [w�; �e]

Var [w�]
�

Cov
�

w�; �g
k

�

Var [w�]
� ��

k

Cov [w�; �r]

Var [w�]
(4.1)

��
k =

�R

�k

+
Cov[w�; �r]

�
Cov

�

w�; �g
k �

�R

�k

�g
I

�

�
Var[w�]

�
Cov

�

�r; �g
k �

�R

�k

�g
I

�

(4.2)

q� = E[w�] � 2�Cov[w�; p�D � C(D)] ; (4.3)
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and p� is a root of the second order polynomial equation

0 = E[(p� � w�)D] � 2�RCov[(p� � w�)D; (p� � w�)D + �g
I ] (4.4)

+ 2�R
Cov[w�; (p� � w�)D]

Var[w�]
Cov

�

w�; (p� � w�)D + �g
I �

�

�R
(p�D � C(D))

�

;

where

� := Var[w�]Var[�r] � Cov2[w�; �r] : (4.5)

Proof. See Appendix A. 2

4.2 The forward price

From 4.3, the forward price equals the expected spot price corrected by a risk premium

term that accounts for the correlation between the spot price and the aggregate pro�t �e,

and the market aggregate risk aversion.15

We can rewrite q� as:

q� = E[Zw�] with Z := 1 � 2�(�e � E[�e]) :

If � is su�ciently small to ensure that Z is always strictly positive, Z de�nes a change in

probability and q� is given by the expected w� under a risk-neutral probability.

The forward price only depends on retail and spot prices. It is independent of the

distribution of market shares and of that of generation assets. Moreover, the risk-neutral

forward price, i.e. the price if some traders are risk neutral, boils down to the expected

spot price q0 = E[w�].

When the cost functions are quadratic, e.g. ck(x) := 1
2x(akx + bk), ak; bk > 0, q� can be

written:

q� = E[w�] �
2�

a
Var[w�](p� � E[w�]) +

�

a
Var

3

2 [w�]Skew[w�] ;

where a�1 :=
P

k2P a�1
k , as in Bessembinder and Lemmon (2002).

The forward price increases with spot price skewness and, in the case where the retail

price is higher than the expected spot price, the forward price decreases with spot price

15 This equation has a form that is similar to that of other equilibrium models in a mean-variance setting,

as shown in Allaz (1992).
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volatility. This shows that, in the case of electricity, where spot price volatility is high,

forward prices that are lower than the expected spot price are common. Nevertheless,

forward prices that are greater than the expected spot price can occur when spot price

skewness is large and positive, i.e. when large upward peaks are possible.

In addition, the forward market equilibrium leads to the following relationship between

retail and forward prices:

p� =
E[w�] � q�

2�Cov[w�; D]
+

Cov[w�; C(D)]

Cov[w�; D]
:

In particular, higher forward prices correspond to lower retail prices and conversely.

4.3 The retail price

In the presence of a forward market, the equation for p� is similar to that found in the

absence of a forward market, with an extra term

2�R
Cov[w�; (p� � w�)D]

Var[w�]
Cov

�

w�; (p� � w�)D + �g
I �

�

�R
(p�D � C(D))

�

:

This term corresponding to the hedging property of the forward market.

As in Section 3, the risk neutral retail price boils down to p0 = E[w�D]
E[D] . This is not

surprising since in that case risk management is irrelevant. We can still write the Taylor

expansion around �R = 0 and show that only one root for p� is relevant, ensuring the

uniqueness of the equilibrium retail price.

We can also exhibit the following properties of equilibrium retail prices:

� The price in a fully integrated economy. If all producers are integrated, i.e.

P � R, we obtain:

0 = E[(p� � w�)D] � 2�RCov[(p� � w�)D; p�D � C(D)]

+ 2�R

�

1 �
�

�R

�

Cov[w�; (p� � w�)D]

Var[w�]
Cov[w�; p�D � C(D)] :

In particular, in the absence of non-integrated traders, R = K and � = �R, so that

the above equation boils down to (3.3), i.e. the forward market has no impact on

the retail price.
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To see this, consider the following example: Suppose there are only N integrated

producers, with the same cost function and the same risk aversion coe�cient. By

symmetry, S�
k = D

N
, ��

k = 1
N

and f�
k = 0 for all k. The agents do not take any

position on the forward market. The retail price should therefore not be a�ected.

This result highlights the substitution e�ect between forward hedging and vertical

integration. When the industry can diversify demand risk through vertical integra-

tion, forward hedging becomes irrelevant. Conversely, Subsection 5.2.3 illustrates

that in the presence of forward hedging, vertical integration has little impact on the

retail price.

� The e�ect of forward trading. In a partially integrated economy, p�
F � p�

NF , i.e.

the forward market reduces the retail price, i�

0 �

�

1 �
�

�R

�

Cov2[w�; (p�
NF � w�)D] (4.6)

+ Cov[w�; (p�
NF � w�)D]Cov[w�; �g

I �
�

�R
�g] : (4.7)

In particular, this is veri�ed if no producer is integrated and the retail income without

a forward market is negatively correlated to the spot price. This is also veri�ed if

no retailer is integrated and � = 0 (e.g. if there is a risk-neutral trader).

In Subsection 5.2, forward hedging will be shown to reduce the retail price, but this

e�ect decreases with the degree of integration in the industry.

� The e�ect of integration. Let p�
NI be the equilibrium retail price in the absence

of integration. In order to compare this price with the equilibrium retail price in the

presence of integrated �rms, we substitute p�
NI for p� in the right hand side of (4.4)

and we examine its sign, i.e. the sign of

Cov[w�; (p�
NI � w�)D]

Var[w�]
Cov[w�; �g

I ] � Cov[(p�
NI � w�)D; �g

I ]: (4.8)

In particular, with quadratic cost functions, we obtain:

Cov[w�; (p�
NI � w�)D]

Var[w�]
Cov[w�; �g

k] � Cov[(p�
NI � w�)D; �g

k]

=
a3

2ak

�

Var[D2] �
Cov2[D2; D]

Var[D]

�

;

which is always positive, so that the right side of (4.4) is positive for p�
NI , i.e. partial

vertical integration reduces the equilibrium retail price.
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We will see in Subsection 5.3 that the presence of vertically integrated producers

always reduces the retail price. This e�ect is nonetheless drastically reduced in

comparison to the case without a forward market.

We summarize our main results in the following proposition:

Proposition 4.2. The forward market and partial vertical integration reduce the retail

price if and only if 4.7 is satis�ed and the sign of 4.8 is positive, respectively.

4.4 Positions on the forward market

Equation 4.1 shows that in contrast to the forward price, forward positions depend on

both p� and ��. Agent k’s forward position has three components. The �rst term, i.e.

the fraction �
�k

of a constant term that involves the correlation between the global pro�t

and the spot price, can thus be interpreted as the trading component.16 The second term,

i.e. the fraction ��
k of the correlation between the global retail pro�t and the spot price is

the retail component. If the retail market revenue is negatively correlated with the spot

price, as we argued in the previous section, then retailers will take long positions on the

forward market to hedge against high spot prices. Finally, the last term corresponds to

the generation component, which takes the form of the correlation between the generation

payo� and the spot price. As generation pro�ts are positively correlated to the spot price,

producers will take short forward positions to hedge against low spot prices.

4.5 Positions on the retail market

We now turn to the market shares characterized in 4.2. When �g
k = �R

�k
�g

I for all k 2 R,

the market shares become ��
k = �R

�k
, as in a non-integrated economy without a forward

market. This obtains, for instance, when there are no integrated �rms, or all producers are

integrated and generation pro�ts are proportional to risk tolerances. Another formulation

for ��
k is:

��
k = �0

k +
�R

�k

�

1 �
Cov[w�; �r]

�
Cov

�

w�; �g
I

�

+
Var[w�]

�
Cov

�

�r; �g
I

�

�

;

16 To see this, note that if k is a speculator only, then the last two terms are zero.
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where

�0
k =

Cov[w�; �r]

�
Cov

�

w�; �g
k

�

�
Var[w�]

�
Cov

�

�r; �g
k

�

is retailer k’s risk neutral market share. This enables us to analyse the deviation of market

shares from the risk neutral equilibrium.

In Section 5, we will observe two important characteristics of market shares. First, the

presence of a forward market is a means for downstream �rms to obtain larger market

shares in the downstream segment. Second, the higher the level of integration of an

integrated producer, the higher its market share.

4.6 Utility functions and the strong asymmetry between downstream

and upstream

The asymmetry relative to risk between retailers and producers is due to several di�erences.

First, in the absence of a forward market and vertical integration, retailers have to make

market share decisions under uncertainty, while producers know the realization of demand

when production takes place. Second, if �nal demand is inelastic to the retail price,

upstream pro�ts are independent of the retail price, while downstream revenues depend

on both retail and spot prices. This asymmetry is central to our analysis.17

Hence, an upstream �rm always bene�ts from trading forward contracts. Since, in our

setting, the generation pro�t �g
k boils down to an exogenous random variable, when an

upstream �rm chooses �fk(q) = 0 for all forward price q, it is guaranteed to receive a utility

MV�k
[�g

k], i.e. the utility in the absence of a forward market. Hence, the presence of a

forward market always increases the utility to upstream �rms because the strategy �f = 0

is admissible and yields the same utility as in the absence of a forward market.

In contrast, downstream �rms do not necessarily obtain a higher utility when forward

contracts become available. Indeed, the retail pro�t �r
k depends on p�, and thus on the

other agents’ decisions. If the retail price p� in the presence of forward trading is di�erent

from the retail price without forward trading, agent k’s retail pro�t will also be di�erent.

17One illustration of this asymmetry is the Californian electricity crisis, in which retailers su�ered large

losses while producers could take advantage of high spot prices.
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Not taking a position on the forward market will not guarantee agent k to obtain the same

utility as in the absence of a forward market.

Proposition 4.3. Forward markets bene�ts upstream �rms, but not necessarily down-

stream �rms, even though downstream �rms bene�t from trading forward contracts.

In Subsection 5.2, the availability of forward contracts decreases the utility to down-

stream �rms. When forward markets are available, each retailer is individually better

o� taking positions on them. Hence, all retailers trade forward contracts and they can

o�er lower retail prices. Nevertheless, the decrease in expected pro�ts o�sets that in vari-

ance and this risk hedging mechanism implies a decrease in utility in comparison to the

environment without forward contracts.

The e�ect of vertical integration on the agents’ utility depends on the utility of vertically

integrated �rm. It turns out that our results are robust to various ways of handling this

problem, in particular Wilson’s (1979) approach to sum the risk tolerance of the integrated

�rms or an approach that would assume that all risk aversion coe�cients, including those

to vertically integrated �rms, are equal.18 In Subsection 5.3, we observe that, like forward

hedging, vertical integration decreases the agents’ utility because of its negative e�ect on

retail prices. Nevertheless, for large risk aversion coe�cients this e�ect can be reversed

and the gain from risk diversi�cation through vertical integration can be higher than the

loss in expected pro�t.

5 Application to the electricity industry

We illustrate our analysis with data from the French electricity market. Electricity is a

non-storable good with broadly inelastic demand and price-taking �rms, so this industry

�ts our theoretical setting well. This market is characterized by the presence of a regulated

dominant agent and recently entered competitors.

18If we were to model the integration stage rather than focusing on the market structure, the change

in utilities due to integration would also depend on the takeover game (see Tirole, 2006, Chapter 11, and

Grinblatt and Titman, 2002, Chapter 20).
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5.1 Methodology

We compute the retail and forward equilibria using data from the French electricity market.

Only spot prices and demand levels are publicly available. To estimate C, we invert the

spot price w� = C 0(D). Demand and spot price hourly data from December 2004 to March

2005 are available on web sites www.rte-france.com and www.powernext.fr. They provide

us with reliable estimates for D and w�.

This winter was generally mild, but it was followed by a cold wave in March. The

recordings are shown on Figure 5.1-left. The circles correspond to values in March. These

are indicative of high market volatility. Nonetheless they remain strongly heterogeneous

since many generation units were unavailable during the March cold wave and that likely

had an impact on the generation costs. To address this heterogeneity, we have added a

constant to the demand sample in March 2005. We have then regressed function C so that

P � = C 0(D) (Figure 5.1-right). The data for D and P �, the risk aversion coe�cients and
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Figure 5.1: Demand and spot price samples (left). Processed and interpolated data (right).

the regressed cost function C enable us to compute the equilibrium.

Without loss of generality, the analysis can be performed with two agents. Indeed,

equations (4.1) and (4.2) are linear in ��1
k and �g

k while (4.4) and (4.3) only involve the

aggregate risk aversion coe�cients � and �R.

21



5.2 The e�ect of the forward market

In this section, we compare the equilibria with and without a forward market under

di�erent environments. We consider two agents in the following scenarios:

1. Agent 1 is an integrated producer that competes with a downstream �rm

2. Agent 1 in an upstream �rm, while Agent 2 is a downstream �rm

3. Agent 1 is integrated and competes with an upstream �rm

4. Agent 1 and Agent 2 are both integrated.

5.2.1 Unbundling of the retail activity

An integrated �rm competes with a downstream �rm. We examine whether or not retail

competition with an integrated monopolist is viable.

In the absence of a forward market, the downstream �rm has to buy input from the

integrated producer on the spot market. Figure 5.2-left shows Agent 1’s market share as

a function of both agents’ risk aversion coe�cients. Agent 2 is limited to a very small

market share, less than 2%, for any risk aversion coe�cient. Agent 2 is subject to high

�nancial risk because it is exposed to the high spot price volatility. Agent 2 has limited
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Figure 5.2: Agent 1’s market share without (left) and with (right) the forward market as

functions of the logarithm of risk aversion coe�cients.

possibilities to enter the retail market, all the more limited as its risk aversion is large.

Figure 5.2-right shows Agent 1’s market share with a forward market. Dotted mesh

regions represent zones where there is no equilibrium (q� < 0). In contrast to the previous
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case, if Agent 2 is less risk averse than Agent 1, then it can enter the retail market and

obtain a larger market share, up to 40%. The retail price remains unchanged, as shown on
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Figure 5.3: Retail price without (left) and with (right) the forward market as functions of

the logarithm of risk aversion coe�cients.

Figure 5.3. This is because all producers are integrated (see Section 4.3). The upstream

risk is already diversi�ed via the producers integrated structure.

The forward market changes the risk allocation between retailers but it does not enhance

risk diversi�cation. When both agents are highly risk averse, they do not agree on ex-

changing forward contracts: There is no forward market equilibrium (dotted mesh zones in

Figure 5.4). When the equilibrium exists, the forward price is almost always greater than

the expected spot price (E[P �] = 37:9518), at least for su�ciently low risk aversion coe�-

cients. Agent 2’s forward position is in the range of its expected demand: f2 ’ 1:1 �2E[D].

Agent 2 hedges its retail demand by 10% above the expected demand, whatever its risk

aversion coe�cient. That is, the integrated producer is better o� being short even if it

has to buy back part of the previously sold volumes on the spot market. Finally, Figure

5.5 shows that the forward market increases both agents utilities. This �gure shows the

gain in the agents utility �U = UF � UNF due to the forward market. For convenience,

we plotted the monotonic transform �(�U), where �(x) := sgn(x) log(1 + jxj), in order

to show both the logarithm of �U and its sign. Both agents bene�t from the forward

market.

For a better understanding of the e�ect of forward hedging, Table 1 reports the relative

gains in utility, average pro�t and variance ("Risk") with �1 = �2 = 10�6. We also

computed the ratio \excess average pro�t" over \excess risk", denoted \Pro�t vs. Risk",
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