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Abstra
tHow mu
h of 
arry trade ex
ess returns 
an be explained by the presen
e of disaster risk?To answer this question, we propose a simple stru
tural model whi
h in
ludes both Gaussian anddisaster risk premia and 
an be estimated even in samples that do not 
ontain disasters. Themodel points to a novel estimation pro
edure based on 
urren
y options with potentially di�erentstrikes. We implement this pro
edure on a large set of 
ountries over the 1996-2008 period,forming portfolios of hedged and unhedged 
arry trade ex
ess returns by sorting 
urren
ies ontheir forward dis
ounts. We �nd that disaster risk premia a

ount for about 25% of 
arry tradeex
ess returns in advan
ed 
ountries.
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1 Introdu
tionCurren
y 
arry trades o�er large, expe
ted ex
ess returns, 
hallenging the ben
hmark models ininternational ma
roe
onomi
s. In this paper, we explore whether a 
lass of disaster-based modelsthat postulate the existen
e of rare but large, adverse aggregate sho
ks to sto
hasti
 dis
ountfa
tors 
an explain these ex
ess returns. This 
lass of models, pioneered by Rietz (1988) andBarro (2006), has re
eived a lot of attention re
ently in the ma
roe
onomi
s and �nan
e literature.However, this 
lass of models is diÆ
ult to estimate due to the small number of disasters in sample.To address this diÆ
ulty, we provide a new method to estimate disaster risk premia even in samplesthat do not 
ontain any disasters. We �nd that disaster risk premia are statisti
ally signi�
ant anda

ount for about one-fourth of 
arry trade ex
ess returns.Curren
y 
arry trades refer to investment strategies where one borrows in low-interest rate
urren
ies and invests in high-interest rate 
urren
ies. The value of the ex
hange rate at the endof the investment period is the unique sour
e of risk. If investment 
urren
ies depre
iate or funding
urren
ies appre
iate, investors' returns de
rease be
ause they lose on their investment or have toreimburse larger amounts. With risk neutral and rational investors, high-interest 
urren
ies shoulddepre
iate on average against low-interest rate 
urren
ies and 
arry trade ex
ess returns should bezero. Yet, in the data, these ex
ess returns are large and positive on average. A natural explanationis that investors are risk-averse and demand to be 
ompensated for taking on su
h risk.Carry trade investors, however, have a

ess to 
urren
y options to hedge this 
urren
y risk.For example, a domesti
 investor who is long in the foreign 
urren
y may buy a put 
ontra
t thato�ers a large payo� in 
ase of depre
iation of the foreign 
urren
y. The investor thereby prote
tshimself against adverse movements in the ex
hange rate. Likewise, a domesti
 investor who is shortin the foreign 
urren
y may buy a 
all 
ontra
t, prote
ting himself against an appre
iation of theforeign 
urren
y. Using di�erent 
urren
y option 
ontra
ts, investors 
an tailor their exposure toex
hange rate risk, buying prote
tion against adverse ex
hange rate movements beyond any 
hosen
uto�. Intuitively, di�erent hedged investment strategies should o�er returns 
ommensurate withtheir amounts of risk. For example, the di�eren
e in returns between a strategy that is immune tolarge adverse 
hanges in ex
hange rates and a strategy that is not re
e
ts the 
ompensation forbearing the risk of a large 
urren
y depre
iation. Yet, a simple 
omparison a
ross unhedged andhedged returns does not allow a pre
ise estimation of disaster risk premia. The reason is simple:hedged strategies prote
t investors both against large 
hanges in ex
hange rates due to jump-likedisasters, but also against large 
hanges that might o

asionally happen in a world of Gaussiansho
ks, without any jump.In this paper, we propose a parsimonious ex
hange rate model to disentangle disaster fromGaussian risk premia. Following Ba
kus, Foresi and Telmer (2001), we start o� with the law of2



motion of the sto
hasti
 dis
ount fa
tor (SDF) in ea
h 
ountry. These SDFs in
orporate both atraditional log-normal 
omponent, as in Lustig, Roussanov and Verdelhan (2008), and a disaster
omponent, as in Farhi and Gabaix (2008). We assume that �nan
ial markets are 
omplete andthus de�ne the 
hange in ex
hange rate as the log di�eren
e between the domesti
 and foreignSDFs. In our model, expe
ted 
urren
y ex
ess returns are simply the sum of Gaussian and disasterrisk premia. The former arise from random sho
ks observed every period, while the latter is dueto rare disasters. We assume that these disasters do not o

ur in sample. As a 
onsequen
e,
hanges in ex
hange rates follow a normal distribution in sample. Our model delivers 
losed formsolutions for short dated put and 
all 
urren
y options, hedged 
urren
y ex
ess returns, and riskreversals (traded option pairs that repli
ate a long out-of-the-money put position and a short outof-the-money 
all position).1 We use these expressions to establish a simple empiri
al pro
edureto measure the 
ompensation for disaster risk. The de
omposition of risk premia presented in thispaper is a methodologi
al 
ontribution that 
ould be useful in other asset markets.We turn to 
urren
y data to implement our pro
edure and test the model's impli
ations. To doso, we rely on 
urren
y spot, forward and option 
ontra
ts 
olle
ted by JP Morgan for 32 
ountries.The data start in January 1996 and end in De
ember 2008. Based on ex
hange rate normality tests,we restri
t our sample in two dimensions: we fo
us on advan
ed 
ountries, and we ex
lude the fall of2008. We take the view that the fall of 2008 
orresponds to a unique disaster in our sample periodand we devote a �nal se
tion to it. As a robustness 
he
k, we report in a separate Appendix theresults obtained with both and emerging 
ountries. Our data set 
omprises the pri
es of one monthoptions on bilateral ex
hange rates with di�erent degrees of moneyness: far out-of-the-moneyputs (denoted 10-delta puts), out-of-the money puts (denoted 25-delta puts), at-the-money putsand 
alls, out-of-the-money 
alls (denoted 25-delta 
alls) and far out-of-the-money 
alls (denoted10-delta 
alls).2Following Lustig and Verdelhan (2007), we form portfolios of 
urren
y ex
ess returns by sorting
urren
ies on their interest rates. We 
onsider zero-investment strategies that go long in thehighest interest rate 
urren
ies and short in the lowest interest rate 
urren
ies. We apply thismethodology to both hedged and unhedged ex
ess returns. Unhedged 
arry trades yield an averageannual ex
ess return of 6:5% in our sample. Carry trades hedged at 10-delta and 25-delta yield1An option is said to be at-the-money if its strike pri
e is equal to the forward ex
hange rate. A put (
all) optionis said to be out-of-the-money if its strike pri
e is below the forward (above the forward), that is, if it takes a largedepre
iation (appre
iation) to make the option worthwhile exer
ising. Figure 1 presents the payo�s of three optionbased strategies 
onsidered throughout this paper: (i) being long an out-of-the-money put option, (ii) being long anout-of-the-money 
all option and (iii) being long a risk-reversal, i.e. being long an out-the-money put option and shortan out-of-the-money 
all option with symmetri
 strikes.2The delta of an option represents its sensitivity to 
hanges in the spot ex
hange rate. The delta of a put variesbetween 0 for extremely out of the money options to �1 for extremely in the money options. A 10-delta (25-delta)put is an option with a delta of 10% (25%). Figure 2 presents the deltas of put options as a fun
tion of their pri
es.3



4:8% and 3:7% per annum, respe
tively, while 
arry trades hedged at the money yield 1.7% perannum. Hedged (ex
ept at the money) and unhedged returns and their di�eren
es are statisti
allyall signi�
ant. Using Hansen (1982)'s Generalized Method of Moments (GMM) with at the money,25-delta and 10-delta options, we obtain a disaster risk premium of 1% per annum. This estimate issigni�
antly di�erent from zero, even after taking into a

ount the small sample size. It representsapproximately one-�fth of unhedged 
arry ex
ess returns. We investigate the robustness of thisresult to the presen
e of transa
tion 
osts and 
ounterparty risk. Bid ask spreads are easily availableon 
urren
y forward rates, but not on options. We thus assume that bid-ask spreads are equal to5 per
ent of implied volatilities for advan
ed 
ountries and 10 per
ent for the other 
ountries.3 Asa result, our simulated bid-ask spreads in
rease in bad times. Their values are lower than the onesobserved during the re
ent subprime mortgage 
risis but 
orrespond to market estimates. Takinginto a

ount bid-ask spreads, we obtain a signi�
ant estimate of the disaster risk premium, whi
h inthis 
ase is equal to 1:3% and represents one-fourth of 
arry ex
ess returns. This is our ben
hmarkestimate. It is a lower bound be
ause it does not take into a

ount 
ounterparty risk. We derivethe sensitivity of this estimate to default probabilities on 
urren
y options markets.The model also implies strong links between interest rates, 
ontemporaneous and future 
hangesin ex
hange rates, and the pri
e of risk reversals, that is the di�eren
e between the pri
e of an out-of-the-money put option and the pri
e of an out-of-the-money 
all option with symmetri
 strikes.Risk reversals 
aptures the presen
e of asymmetri
 downside or upside risk. If the foreign 
urren
yis expe
ted to depre
iate, out-of-the money puts should be more expensive than symmetri
 out-of-the money 
alls. On the other hand, if ex
hange rates were normally distributed, symmetri
puts and 
alls should have the same pri
es. The model predi
ts that:(i) risk reversals in
rease withinterest rates; (ii) an in
rease in risk reversals is asso
iated with a 
ontemporaneous ex
hange ratedepre
iation re
e
ting the higher riskiness of the 
urren
y; and (iii) high risk reversals predi
t highaverage future 
urren
y returns sin
e high exposures to disaster risk have to be 
ompensated byhigh returns. We 
he
k these predi
tions on individual 
ountries, panel data and 
urren
y portfolios.Empiri
ally, risk reversals in
rease with interest rates, as in the model. Prote
tion against 
rashrisk is more expensive for high interest rate 
urren
ies than for low interest rate ones. We �nd,as in the model, that in
reases in risk reversals and foreign 
urren
y depre
iations tend to o

ursimultaneously. However, eviden
e is mixed as to whether risk reversals predi
t future ex
hangerates. Overall, risk reversals appear to 
ontain useful information on potential disasters. Buildingportfolios on the basis of risk reversals delivers a monotoni
 
ross-se
tion of 
urren
y ex
ess returns.The implied disaster risk premia is in line with our previous estimates.3The implied volatility is de�ned as the volatility ne
essary to mat
h the observed option pri
e using a standardBla
k-S
holes formula. Figure 3 presents the link between implied volatilities and ex
hange rate distributions.4



We also examine the impli
ations of our model for the implied volatility smile.4 We presenta simple 
alibration of the model that simultaneously mat
hes our estimate of the disaster riskpremium and provides a good �t for the smile observed in the data.Overall, our model is not reje
ted by the data. We rea
h this 
on
lusion by performing a J-testof the model's pri
ing errors. This validates our strategy of using a parsimonious and tra
tablemodel. In our view, resorting to a ri
her but more 
omplex model would be justi�ed only if we hada

ess to a larger dataset.As a 
ase study of a disaster episode, we use the fall of 2008. This period 
ertainly representedbad times - 
orresponding to a high SDF - as eviden
ed by the deterioration in a large set of
onventional risk measures. For example, during the fall 2008, the US sto
k market index de
linedby 33 per
ent a

ording to the MSCI index. Consistent with the disaster hypothesis, we do
umentthat the 
arry trade performed very poorly during that period. The 
umulative loss amounts to17.8 per
ent from September to De
ember. This also represents an extreme drop from a statisti
alperspe
tive, as the standard deviation of monthly 
arry trade returns over the whole sample is just2 per
ent.Our estimates of disaster risk premia and 
arry trade losses during fall 2008 are broadly 
onsistentwith the �ndings and 
alibration of Barro (2006) and Barro and Ursua (2008, 2009). In our model,the disaster risk premium depends on two main 
omponents: (i) the probability of disasters and theimpa
t of disasters on SDFs, and (ii) the 
arry trade payo�s in times of disaster. We use fall 2008episode to 
alibrate the latter and the values in Barro and Ursua (2008) to 
hara
terize the former.These parameters imply a disaster risk premium of 2:8% whi
h is higher than, but 
omparable to,our estimate of 1:3%. This exer
ise should be viewed as a ba
k of the envelope 
al
ulation ratherthan a rigorous estimate, sin
e our inferen
e relies on a single disaster.Our paper is related to two di�erent literatures: the forward premium puzzle and its potentialexplanations, and option pri
ing with jumps. Sin
e the pioneering work of Hansen and Hodri
k(1980) and Fama (1984), many papers have reported deviations from the un
overed interest rateparity (UIP) 
ondition. These deviations are also known as the forward premium puzzle. In are
ent 
ontribution, Lustig et al. (2008) build a 
ross-se
tion of 
urren
y ex
ess returns and showthat it 
an be explained by 
ovarian
es between returns and return-based risk fa
tors. In order torepli
ate this result, sto
hasti
 dis
ount fa
tors must have a 
ommon 
omponent a
ross 
ountries,but also heterogenous loadings on this 
ommon 
omponent. This paper builds on the disaster riskliterature to satisfy this 
ondition.5 Our model derives from Farhi and Gabaix (2008), who augment4The implied volatility of an option is a 
onvenient normalization of the pri
e of this option as a fun
tion of itsstrike. The smile refers to the relationship between the implied volatility and the strike. We provide formal de�nitionsin se
tion 3 of the paper.5Other 
onsumption-based models repli
ate the forward premium puzzle. Verdelhan (2009) uses habit preferen
es5



the standard 
onsumption-based model with disaster risk, following Rietz (1988) and Barro (2006).World disaster risk is a 
ommon 
omponent, but 
ountries di�er in their exposures to world disasters.As a result, this paper 
ontributes to the large literature on Peso problems in international �nan
e.6Our paper also belongs to a re
ent literature using options to investigate the quantitative im-portan
e of disasters in 
urren
y markets. Bhansali (2007) was the �rst to do
ument the empiri
alproperties of hedged 
arry trade strategies. Brunnermeier, Nagel and Pedersen (2008) show thatrisk reversals in
rease with interest rates. In their view, the 
rash risk of the 
arry trade is due to apossible unwinding of hedge fund portfolios. This is 
onsistent with one interpretation of disasters.Most 
losely related to this paper, Jurek (2008) provides a 
omprehensive empiri
al investigation ofhedged 
arry trade strategies. He uses deep out of the money 
urren
y options to extra
t 
urren
y
rash risk. While his main result, that disaster risk explains 30% to 40% of 
arry trade returns,is 
onsistent with the �ndings of this paper, our approa
h di�ers in several dimensions. First, ourmodel-based empiri
al strategy leads to a stru
tural interpretation of our results. Se
ond, our modelallows us to use a variety of option strikes, in
luding more liquid at the money options, in orderto disentangle Gaussian and disaster risk premia. Finally, using at the money options, Burnside,Ei
henbaum, Klesh
helski and Rebelo (2008) also �nd that disaster risk 
an a

ount for the 
arrytrade premium, where disaster risk 
omes in the form of a high value of the sto
hasti
 dis
ountfa
tor, rather than large 
arry trade losses. In 
ontrast to our approa
h, in their framework theonly sour
e of risk pri
ed in 
arry trade returns is disaster risk.A related literature studies high frequen
y data and option pri
ing with jumps, following thepioneering work by Bates (1996), who shows that ex
hange rate jumps are ne
essary to explainoption `smiles'. Re
ent examples in
lude Carr and Wu (2007) who �nd great variations in theriskiness of two 
urren
ies (the yen and the British pound) vis a vis the US dollar, and relate itto sto
hasti
 risk premia. Campa, Chang and Reider (1998) do
ument similar results for EMS
ross-rates. Bakshi, Carr and Wu (2008) �nd eviden
e that jump risk is pri
ed in 
urren
y options.The jumps they 
onsider, however, are high frequen
y jumps, whereas the disasters we have in mindare very low frequen
y; in the Barro (2006) study, disasters happen every 60 years. As a result, thein the vein of Campbell and Co
hrane (1999). Bansal and Shaliastovi
h (2008) build on the long run risk modelpioneered by Bansal and Yaron (2004). Guo (2007) presents a disaster-based model with monetary fri
tions. Ba
kus,Chernov and Martin (2009), Barro and Ursua (2009), Bates (2009), Gabaix (2008), Gourio (2008), Julliard and Ghosh(2008), Liu, Pan and Wang (2005), Martin (2008), Pan (2002), Santa-Clara and Yan (2009) and Wa
hter (2008)study disaster risk on equity and bond markets. Using swap rates, ex
hange rate returns, and pri
es of at-the-money
urren
y options, Graveline (2006) estimates a two-
ountry term stru
ture model that repli
ates the forward premiumanomaly. Barro (2009) studies the welfare 
osts of rare disasters.6See Lewis (1995) for a re
ent survey. For example, Kaminsky (1993), extending the work of Engel and Hamilton(1990), 
onsiders the possibility for rare events to explain investors' expe
tations about ex
hange rates. Rare eventsin her model are infrequent swit
hes from 
ontra
tionary to expansionary monetary poli
y. She provides eviden
e thatinvestors' expe
tations are 
onsistent with the model. However, she does not examine the forward premium puzzle,and only 
onsiders one ex
hange rate (dollar-sterling) and a short time period.6



e
onomi
 analysis and our e
onometri
 te
hnique are very di�erent: we 
annot dire
tly measuredisasters, as they do not happen in our sample, unlike small jumps in studies su
h as Bakshi et al.(2008).Our paper is organized as follows. Se
tion 2 presents our model and derives its main impli
ations.Se
tion 3 reports our empiri
al results and Se
tion 4 
on
ludes. A separate appendix reports proofsand empiri
al robustness 
he
ks.
2 TheoryWe provide a simple model that serves as the basis for our empiri
al strategy. In the model, expe
ted
arry trade returns Xe 
orrespond to the sum of two risk premia, a normal times or Gaussian riskpremium �G and a disaster risk premium �D:Xe = �D + �G :Here and in what follows G refers to Gaussian and D refers to Disaster.Our main obje
tive is to devise a simple stru
tural estimation pro
edure to determine �G , �Dand the fra
tion of 
arry trade returns due to disaster risk. To a

omplish this, we use additionalinformation from hedged 
arry trade returns. Hedged 
arry trades are zero investment trades wherethe investor borrows in the funding 
urren
y and uses the pro
eeds to invest in the investment
urren
y and to pur
hase prote
tion against a large depre
iation of the investment 
urren
y through
urren
y put options.7 In the model, we derive 
losed form solutions for expe
ted returns of hedged
arry trades as a fun
tion of the option strikes. The expe
ted return Xehedged of a hedged 
arry tradeis equal to: Xehedged = (1 + �)�G :In this formula, � 2 (�1; 0) denotes the \delta" of the put option hedging the trade, whi
h wede�ne below. It is in
reasing in the option strike. This is intuitive: the further away from the money,the more depre
iation risk the investor bears, the higher the expe
ted return of the hedged 
arrytrade. We will make use of several strikes, with 
orresponding \delta" equal to �0:1 for deep outof the money options, �0:25 for out of the money options and �0:5 for at the money options.Hen
e the expe
ted returns of a 
arry trade hedged deep out of the money (10-delta), out of the7In this simple overview, returns are 
omputed in the units of the funding 
urren
y. Later in the paper, we alsotreat the more general 
ase where returns are 
omputed in the units of the investment 
urren
y.7



money (25-delta) and at the money (ATM) respe
tively are:Xehedged, 10-delta = 0:9�G ; Xehedged, 25-delta = 0:75�G ; Xehedged, ATM = 0:5�G :To the best of our knowledge, this simple de
omposition of hedged and un-hedged returns is novel.The rest of the se
tion is devoted to setting up a model and deriving this result. Our modelingstrategy follows Ba
kus et al. (2001): we spe
ify a sto
hasti
 dis
ount fa
tor for ea
h 
ountry.These sto
hasti
 dis
ount fa
tors in
orporate both a traditional log-normal 
omponent as in Lustiget al. (2008) and a disaster 
omponent as in Farhi and Gabaix (2008). This is enough to 
omputeall relevant quantities, returns and asset pri
es.
2.1 Model Set-UpWe fo
us on two 
ountries, Home and Foreign, and develop a two-period model. In order to developour empiri
al appli
ation, in se
tion 3 we explain how to in
orporate this building blo
k in a multi-
ountry, multi-period extension. There, we introdu
e a state variable 
t whi
h des
ribes the stateof the world. The parameters of our two-
ountry, two-period model depend on 
t . All the results inthis se
tion should be understood as returns 
onditional on 
t, but for notational simpli
ity, we donot make this dependen
e expli
it. In parti
ular, all the expe
tations in this se
tion are 
onditionalon 
t.We assume that �nan
ial markets are 
omplete, but that some fri
tions prevent perfe
t risk-sharing a
ross 
ountries.8 Be
ause we only have data for options on nominal ex
hange rates, we
hoose to 
onsider only nominal returns. Therefore, our SDFs should be thought of as nominalSDFs (i.e., in units of lo
al 
urren
y).9In the home 
ountry, the log SDF evolves as:logMt;t+� = �g� + "p� � 12 var (") �+{ 0 if there is no disaster at time t + �log (J) if there is a disaster at time t + � } :8The assumption of 
omplete markets is not ne
essary. Te
hni
ally, our theory only requires the absen
e of arbitrage,and that risk-free bonds and options with enough strikes be traded. In other words, we rely on the existen
e of SDFsbut do not need these SDFs to be unique.9The link with real pri
ing kernels is well-known. If Qt;t+� is the 
hange in the quantity of real goods bought by oneunit of the lo
al 
urren
y, and MRt;t+� is the real SDF, then the nominal SDF is Mt;t+� = MRt;t+�Qt;t+� .8



We use a star to denote foreign variables. The log of SDF in the foreign 
ountry evolves as:logM?t;t+� = �g?� + "?p� � 12 var ("?) �+{ 0 if there is no disaster at time t + �log (J?) if there is a disaster at time t + � } :Note that the SDFs have two 
omponents. The �rst one, �g� + "p� � 12 var (") � , is a
ountry-spe
i�
 Gaussian risk, with an arbitrary degree of 
orrelation a
ross 
ountries. The se
ond
omponent, log (J), 
aptures the impa
t of a disaster on the 
ountry's SDF.The probability of a disaster between t and t+� is given by p� . Note that disasters are perfe
tly
orrelated a
ross the two 
ountries: disasters are world disasters. Here, g and g? are 
onstants.The random variables ("; "?) are jointly normally distributed with mean 0 and may be 
orrelated.However, ("; "?) are independent of the nonnegative random variables J and J?, whi
h measurethe magnitudes of the disaster event. All these variables are independent of the realization of thedisaster event.The \disaster" 
an have several interpretations. One, 
hampioned by Rietz (1988) and Barro(2006), is that of a ma
roe
onomi
 drop in aggregate 
onsumption, perhaps due to a war or amajor e
onomi
 
risis that a�e
ts many 
ountries. Another interpretation is that of a �nan
ial
risis or stress, whi
h would a�e
t parti
ipants in world �nan
ial markets, perhaps via a drasti
liquidity shortage and a violent drop in asset valuations. Both interpretations have merit, and wedo not need to take a stand on the pre
ise nature of a disaster.This model is extremely tra
table. Indeed, it yields 
losed form solutions for a number of keymoments of interest. However, this tra
tability does not 
ome for free. It relies on a few importantassumptions: � and �� are jointly normal and independent of the realization of the disaster. As weshall see shortly, our model implies that, 
onditional on no disasters, the 
hange in the ex
hangerate between home and foreign is an aÆne transformation of ��� �. In Se
tion 3, we show that thehypothesis that the distribution of monthly log ex
hange rate 
hanges 
onditional on no disasterbeing lognormal 
annot be reje
ted in our sample.10 This validates the assumption that �� � � isnormally distributed and independent of the realization of disasters. Yet, our model presumes notonly that �� � � is normal, but also that � and �� are both normal.11 This assumption on pri
ingkernels is harder to 
onfront dire
tly with the data. Se
tion 3.2 provides an overall test of the �tof the model, and fails to reje
t it. This validates our overall strategy of building a simple and10At very high frequen
ies, ex
hange rates exhibit fat-tailed distributions. In line with the 
entral limit theorem,however, monthly 
hanges in ex
hange rates very often appear Gaussian.11In Se
tion 3, we return to this issue and dis
uss how relaxing this hypothesis 
ould potentially help us redu
e thesensitivity of the estimated disaster risk premium on the strikes of the options used for the estimation.9



parsimonious model that is 
onsistent with the data.2.2 Interest Rates and Ex
hange RatesIn a 
omplete markets e
onomy su
h as ours, the 
hange in the (nominal) ex
hange rate is givenby the ratio of the SDFs (Ba
kus et al., 2001):St+�St = M?t;t+�Mt;t+� ;where S is measured in home 
urren
y per foreign 
urren
y. An in
rease in S represents an appre-
iation of the foreign 
urren
y. The ex
hange rate moves both in normal times and in disasters.In normal times, the ex
hange rate in
reases following a good realization of the home Gaussianrisk " or a bad realization of the foreign Gaussian risk "?. In disasters, the ex
hange rate in
reasesfollowing a good realization of J or a bad realization of J?.It is important to note that a low realization of J? 
orresponds to a depre
iation of the foreign
urren
y. Hen
e, a 
ountry's exposure to disaster risk in
reases when the distribution of J? de
reasesin the �rst order sto
hasti
 dominan
e sense. A
tually, we will see shortly that a summary stati
sfor the foreign 
ountry's exposure to disaster risk is �pE[J? � 1℄.The home interest rate r is determined by the Euler equation 1 = E [Mt;t+�er� ℄:r = g � log (1 + p�E [J � 1℄) =�: (1)A similar expression determines the foreign interest rate. In the limit of small time intervals, thisexpression takes a very simple form.Proposition 1. In the limit of small time intervals � ! 0, the interest rate r in the home 
ountryis given by: r = g � pE [J � 1℄ :A similar formula holds for the foreign interest rate. Ceteris paribus, if the foreign 
ountry hasa higher average disaster risk, or lower pE [J� � 1℄, then it also has a higher interest rate. Thishigher interest 
an be understood as a 
ompensation for the risk of holding a 
urren
y that tendsto depre
iate in disasters, when the SDF is high.2.3 OptionsTo determine the payo�s of hedged 
arry trades, we need to spe
ify some option related notation.We denote by Pt;t+� (K) and Ct;t+� (K) the pri
es of one period puts and 
alls on the home-foreign10




urren
y pair: Pt;t+� (K) is the home 
urren
y pri
e of a put yielding (K � St+�St )+ in home 
urren
y,and Ct;t+�(K) is the home 
urren
y pri
e of a 
all yielding (St+�St � K)+ in the home 
urren
y.12The Bla
k-S
holes formula. Our 
losed form solutions for hedged 
arry trade returns build on aversion of the Bla
k-S
holes formula. This formula, developed originally in Bla
k and S
holes (1973)in the 
ontext of sto
ks, was adapted to a foreign ex
hange setting by Garman and Kohlhagen(1983). We denote by V PBS(S;K; �; r; r ?; �) and V CBS(S;K; �; r; r ?; �) the Bla
k-S
holes pri
e fora put and a 
all, respe
tively, when the spot is S; the strike is K, the volatility is �, the time tomaturity is � , the home interest rate is r and the foreign interest rate is r ?. For example, theBla
k-S
holes pri
e of a put is given byV PBS(S;K; �; r; r ?; �) = Ke�r�N(�d2)� Se�r ?�N(�d1);where N is the 
umulative distribution fun
tion of a Gaussian, andd1 = log(S=K) + (r � r ? + �2=2)��p� ; d2 = d1 � �p�:The Bla
k-S
holes formula has a simple s
aling property with respe
t to the time to maturity� and the interest rates r and r ?:V PBS(S;K; �; r; r ?; �) = V PBS(Se�r ?� ; Ke�r� ; �p�; 0; 0; 1):This s
aling property allows us to always use the formula when the time to maturity is equal to 1and both interest rates are 0. For notational 
onvenien
e, we will omit the arguments 0 and 1 andsimply write V PBS(S;K; �) � V PBS(S;K; �; 0; 0; 1):The \delta" of options. The delta of an option is the sensitivity (or the partial derivative) of theoption pri
e to a 
hange in the underlying ex
hange rate. The delta of a put is negative be
ausethe value of a put in
reases when the underlying 
urren
y depre
iates. The delta in
reases with thestrike of the put: a deep out-of-the-money put has a delta 
lose to 0, while a deep-in-the-money12We use the notation: y+ � max (0; y) :11



has a delta 
lose to �e�r ?� . For example in the Bla
k-S
holes model, the delta of a put is given by�V PBS(S;K; �; r; r ?; �)=�S = �e�r ?�N(�d1):We will often 
onsider the limit of short time to maturity. The delta of the option then has asimple interpretation. It is the probability that the put will be exer
ised. More formally, the deltaof a put option with time to maturity � and strike Se�p� has the following limit:13�PBS(�) � lim�!0 �V PBS(S; Se�p� ; �; r; r ?; �)=�S = �N(�=�) 2 (�1; 0);where the partial derivative is taken with respe
t to the �rst argument.For example, for at-the-money options, � = 0, so the delta of an at the money put is �1=2.2.4 Hedged and Unhedged Carry-Trade ReturnsWe 
ompute returns in units of the home 
urren
y. However, we want to allow for the possibilitythat home might be both the funding 
urren
y (if r < r ? )and the investment 
urren
y (if r > r ?.)We therefore de�ne two 
arry-trade payo�s X and Y , whi
h 
orrespond to these two 
ases:Xt;t+� = er ?� St+�St � er� ;Yt;t+� = �Xt;t+� :The payo� Xt;t+� 
orresponds to the following trade: at date t, borrow 1 unit of the home 
urren
y,at rate r , and invest the pro
eeds in the foreign 
urren
y, at rate r ?. At the end of the trade, at datet + � , 
onvert the pro
eeds ba
k into the home 
urren
y. The payo� Yt;t+� = �Xt;t+� 
orrespondsto the opposite trade.In the main text, we treat the 
ase where the home 
urren
y is the funding 
urren
y (r <r �). The 
orresponding derivations 
an be found in Appendix A. In Appendix B, we derive the
orresponding results for the 
ase where home is the investment 
urren
y.We now 
onstru
t the hedged 
arry-trade returns, Xt;t+�(K). The return Xt;t+�(K) is thepayo� of the following zero investment trade: borrow one unit of the home 
urren
y at interestrate r , use the pro
eeds to buy �Pt;t+�(K) puts with strike K prote
ting against a depre
iation inthe foreign 
urren
y, and invest the remainder (1� �Pt;t+�(K)Pt;t+�(K)) in the foreign 
urren
y atinterest rate r ?, where Pt;t+� (K) is the home 
urren
y pri
e of a put yielding (K � St+�St )+ in the13In this equation, � is a normalized measure of the moneyness of the option.12



home 
urren
y:Xt;t+�(K) = (1� �Pt;t+� (K)Pt;t+�(K)) er ?� St+�St + �Pt;t+� (K)(K � St+�St )+ � er� ;where we 
hoose the hedge ratio �Pt;t+� (K) to eliminate disaster risk:�Pt;t+� (K) = er ?�= (1 + P (K) er ?�) :Of foremost interest to us is the annualized expe
ted returns, 
onditional on no disasters, oftwo strategies: the unhedged 
arry trade, Xe, and the hedged 
arry trades at strike e�p� over shorthorizons � , Xe(�). These returns 
orrespond to the following limiting 
ases:Xe = lim�!0END [Xt;t+� ℄ =�;Xe(�) = lim�!0END [Xt;t+� (e�p�)] =�:To summarize our notation: Xt;t+� denotes the 
arry-trade return, while Xe is its expe
tedvalue; Xt;t+�(e�p�) denotes the hedged 
arry trade return with strike K = e�p� , while Xe(�) is theexpe
ted value of that hedged 
arry trade return. END denotes expe
tations under the assumptionof no disaster.The following proposition o�ers a de
omposition of these returns in terms of disaster andGaussian risk premia.Proposition 2. In the limit of small time intervals (� ! 0), 
arry trade expe
ted returns (
onditionalon no disasters) are given by the following equation:Xe = pE [J � J?℄ + 
ov ("; "� "?) : (2)In the same limit, hedged 
arry trade expe
ted returns (
onditional on no disasters) are given by:Xe(�) = �pE [(J? � J)+]+ 
ov ("; "� "?) (1 + �PBS(�)) : (3)The �rst term in equation (2) is the risk premium asso
iated with disaster risk:�D � pE [J � J?℄ :If the foreign 
ountry is riskier, then E [J � J?℄ > 0 and the expe
ted return due to disaster risk ispositive. The se
ond term, is the risk premium asso
iated with \Gaussian risk"a la Ba
kus et al.13



(2001):14 �G � 
ov ("; "� "?) :It is the 
ovarian
e between the home SDF and the bilateral ex
hange rate St+�=St. In our model,the expe
ted return of the 
arry trade 
ompensates for the exposure to these two sour
es of risk.The pur
hase of a prote
tion against extreme depre
iation a�e
ts the loading of the 
arry-tradepayo� on the two sour
es of risk in the model. This is re
e
ted in the expression for the expe
tedvalue of the hedged 
arry trade return in equation (3). The disaster risk premium �D is redu
edto pE [(J? � J)+℄, whi
h equals zero if J > J? almost surely. The Gaussian risk premium �G isredu
ed to 
ov ("; "� "?) (1 + �PBS(�)). This 
an be understood as follows: sin
e the put optionhas a sensitivity to 
urren
y 
hanges equal to the \option delta" �PBS(�), hedging redu
es the riskpremium 
orresponding to Gaussian risk by 
ov ("; "� "?) j�PBS(�)j. We will expand on the intuitionfor this term below, in se
tion 2.5.Implied volatilities. To put Proposition 2 to work, we use implied volatilities. The implied volatility�̂t;t+� (K) of a put with strike K is de�ned impli
itly as the volatility that would make the Bla
k-S
holes pri
e mat
h the observed pri
e of the option:Pt;t+�(K) = e�r ��V PBS (1; Ke(r ?�r)� ; �̂t;t+� (K)p�) :A similar de�nition stands for 
all options. By the put-
all parity formula, the implied volatility of aput and a 
all of same strike and maturity are equal. We now state a Lemma that will simplify theempiri
al analysis.Lemma 1. In the limit of small time intervals (� ! 0), the Bla
k-S
holes implied volatility�̂t;t+� (e�p�) of a put or a 
all with strike e�p� is given by var ("? � ")1=2.Lemma 1 states that, in the limit of small time intervals, the implied volatility is equal to thephysi
al Gaussian volatility of the bilateral ex
hange rate, var ("? � ")1=2. This is true even thoughour model 
ontains both normal times risk and disaster risk. The intuition is the following: foroptions 
lose to the money, the value of the option due to disasters is proportional to p� , the14Ba
kus et al. (2001) show that, when markets are 
omplete and SDFs are log normal, then expe
ted log 
urren
yex
ess returns are equal to E(logRe) = 1=2V ar(logM) � 1=2V ar(logM?). We fo
us here instead on the log ofexpe
ted 
urren
y ex
ess returns, but the two expressions are naturally 
onsistent. Starting from Ba
kus et al. (2001),we obtain: logE(Re) = E(logRe) + 12V ar(Re) = 12V ar(")� 12V ar("?) + 12V ar("� "?)= V ar(")� Cov("; "?): 14



probability that the disaster will o

ur during the lifetime of the option, � . This is very small
ompared to the value of the option due to normal times volatility, whi
h is proportional to p� .Hen
e, for small maturities and strikes 
lose to the money, most of the value of the option 
omesfrom Gaussian risk rather than disaster risk. Correspondingly, the implied volatility of the option iswell approximated by the physi
al volatility of the ex
hange rate.In the 
ase of short-dated options with 
lose to the money strikes, Lemma 1 implies that we 
anuse the Bla
k-S
holes implied volatilities �̂t;t+� (e�p�) instead of the physi
al Gaussian volatilityvar ("? � ")1=2 when 
omputing �PBS(�) in equation (3). This is true even though the assumptionsof the Bla
k-S
holes model do not hold due to the presen
e of disasters.Hen
e, we do not have have to fore
ast future volatility 
ountry by 
ountry (whi
h is hard giventhat market parti
ipants have more information than we do). We 
an instead rely on option-impliedvolatilities. The quality of this approximation deteriorates for out-of-the-money options. Then,the implied volatility will be larger than the physi
al volatility. Our pro
edure will then bias ourestimates of option deltas away from 0, leading to an overestimation of Gaussian risk premia andan underestimation of disaster risk premia.In pra
ti
e, traders routinely use the Bla
k-S
holes delta of the underlying option rather thanits strike, whi
h is a 
onventional quantity 
omputed as follows�e�r ��N(�p� + (r � r � � �̂2=2) ��̂p� ) :Note that this quantity might di�er from the true sensitivity of the option with respe
t to thefundamental. However, it 
onverges to �PBS(�) = �e�r ?�N(�d1) in the limit of small time intervals.Using Lemma 1 therefore provides us with a useful simpli�
ation: the 
onventional deltas thattraders use to quote 
urren
y options 
oin
ide, in the limit of small time intervals, both with thetrue deltas of the options and with the quantity �PBS(�) featured in our model.In pra
ti
e, this approximation is valid when the disaster risk premium p(J� � J)� is small inabsolute value 
ompared to the option pri
e, whi
h is of order ��p� , where � > 0 depends on �.Therefore, for our approximation to be valid, we need � � (��= (p jJ � J?j))2. Numeri
ally, withyearly units, volatility is about 10%, so � ' 0:1. The disaster part of the 
arry trade risk premium is,in order of magnitude, 1.5%, so p jJ� � Jj ' 0:015.15 Thus we need � � 44�2. For at-the-moneyoptions, � = 1=p2�, and the 
ondition is � � 44�2 = 6:9 years. As we use one-month options(� = 1=12), our approximation 
an be expe
ted to be valid in pra
ti
e. Furthermore, in pra
ti
e,the ratio of the implied volatility of 10 and 25-delta options to the implied volatility of ATM optionstypi
ally lies between 1 and 1.2. Hen
e, using the volatility ATM rather than the implied volatility15To do this analysis, we do not need to de
ompose the relative 
ontributions of p and J� � J, as Farhi and Gabaix(2008) do. Only the value of the disaster risk premium, p(J? � J)� , matters.15



at 10-delta would 
hange the fa
tor 1 + � of 10 delta options from 0.9 to 0.94. For the 25-deltaoptions, the 1 + � fa
tor would be equal to 0.79 instead of 0.75.16 These 
orre
tions would implyonly trivial modi�
ations to our empiri
al estimates, mu
h below their reported standard errors.2.5 Estimating the Contribution of DisastersThe expe
ted return of the unhedged 
arry trade in equation (2) 
an be re-expressed as:Xe = �D + �G : (4)Assume that J? < J almost surely: this means that the ex
hange rate of the foreign 
ountrywill depre
iate vis a vis the home 
ountry in 
ase of a disaster. A put option prote
ts the investoragainst this depre
iation in 
ase of disaster, and also against more modest depre
iations resultingfrom Gaussian risk. As a 
onsequen
e, the hedged 
arry trade is less risky and 
ommands a lowerrisk-premium. The further out of the money the put option is, the more risk the investor bears,and the higher the hedged 
arry-trade return. Indeed, we 
an re-express (3) as:Xe(�) = �G (1 + �PBS(�)) :For instan
e, take the 
arry trade hedged with at the money options (� = 0). Then, �PBS(�) =�1=2, and Xe(�) = 0:5�G . The expe
ted return of the 
arry trade hedged at the money is equalto half of the no-disaster risk premium �G .17The intuition is that the hedge eliminates all the disaster risk and half the Gaussian risk. Thefa
t that exa
tly half of the Gaussian risk is eliminated might seem surprising, given that the SDFputs more weight on depre
iations of the foreign 
urren
y than on its appre
iations. The intuitionis as follows. In the limit of small time horizons � ! 0, the \shape" of the distribution is a Gaussianwith standard deviation �p� , while the adjustments for risk that govern the di�eren
e between thephysi
al and risk-adjusted probability are mu
h smaller, of the order of magnitudes of � . Togetherwith the fa
t that the Gaussian distribution is symmetri
 around 0, this implies Xe(0) = 0:5�G .Next, take the 
arry trade hedged with put option at \25-delta". In the language of 
urren
ytraders, that means that the strike is su
h that the delta of the put is �0:25. There, Xe(�) =0:75�G . Likewise, for the 
arry trade hedged at 10-delta, we get Xe(�) = 0:9�G . Again, the16With an upper bound of 1.1, the numbers are 0.92 and 0.77. With an upper bound of 1.3, they are 0.95 and 0.81.17An informal intuition is as follows. The 
arry trade has a \disaster beta" of 1, and a \Gaussian risk" beta of 1.Hen
e, its risk premium is �D +�G. On the other hand, the 
arry trade hedged at the money has a zero disaster beta,and a Gaussian risk beta of 1=2 (as we saw earlier, it eliminates half the Gaussian risk). Hen
e, its risk premium is0:5�G. Likewise, the 
arry trade hedged at 10-delta has a zero disaster risk beta, and a Gaussian risk beta of 0:9 (asit eliminates 10% of the Gaussian risk), hen
e it has a risk premium of 0:9�G.16



intuition is that, given that the hedge uses a relatively deep out of the money put, investors bearmu
h of the Gaussian risk, but not all of it: they bear 90% of the risk, so that the expe
ted returnof the 
arry trade at 10-delta is 0:9 times the Gaussian risk premium.The strategy underlying our estimation pro
edure is to use expe
ted returns of di�erent strate-gies with di�erent loadings on disaster and Gaussian risks to infer �G and �D. Alternatively, optionpri
es 
an also be used dire
tly to make some inferen
e about those premia. We turn to this issuein the next se
tion.2.6 Risk ReversalsRoughly speaking, if the foreign 
urren
y is riskier than the home 
urren
y, then out of the moneyput pri
es on the 
urren
y pair (home, foreign) should be higher than out of the money 
all pri
es,as the pri
e of prote
tion against a devaluation of the foreign 
urren
y should be high. In thisse
tion, we 
onstru
t a simple metri
 { risk reversals { to measure the gap between the out of themoney puts and out of the money 
alls.One tradition is to 
onstru
t risk reversals as the implied volatility of an out of the money put,minus the implied volatility of a symmetri
 out of the money 
all. A more theoreti
ally appealingde�nition for our purposes is to look at the di�eren
e between the pri
es of put and 
alls, ratherthan between their implied volatilities. More pre
isely, we 
all F = e(r�r ?)� the forward rate ofbilateral ex
hange rate St+�=St. We use k , whi
h in pra
ti
e is 
lose to 1, in order to indi
atethe moneyness of the options. For instan
e, for puts and 
alls 
orresponding to movements of 10per
ent from the forward rate, k = 1:1. We de�ne the risk reversal to be:RR(Fk) = P (Fk�1)� k�1C (Fk) : (5)Risk reversals are the pri
e of one put with strike Fk�1 minus k�1 
alls with strike Fk , whi
h issymmetri
 with respe
t to the money forward, F . For instan
e, in the previous 
ase where k = 1:1,the risk reversal is the pri
e of a put prote
ting against a 10 per
ent depre
iation of the foreign
urren
y, minus 0.9 units of a 
all paying o� symmetri
ally, i.e. if the foreign 
urren
y appre
iatesby 10 per
ent.The next lemma gives the reason for the de�nition in equation (5): if there is only Gaussian risk,then the risk reversal is exa
tly 0.Lemma 2. If there is no disaster risk, then the risk reversal is exa
tly 0, for all strikes: RR (Fk) = 0for all k > 0.On the other hand, if there is disaster risk, the risk reversal is basi
ally the pri
e of an out-of-the-money put (e.g., in the previous example, prote
ting against a 10 per
ent depre
iation of17



the foreign 
urren
y), minus the pri
e of a symmetri
 
all (e.g., prote
ting against a 10 per
entappre
iation of the foreign 
urren
y). Hen
e, if the foreign 
ountry has more 
rash risk than thehome 
ountry, its risk reversal is positive.In the next proposition, we 
hara
terize the limit pri
e of risk reversals for strikes in the parametri

lass e�p� :Proposition 3. In the limit of small time intervals, the pri
e of risk reversals is given by the followingequation lim�!0RR(Fe�p�)=� = pE [(J � J?)+ � (J? � J)+] (6)+ 2(1 + �PBS(�))pE [(J? � J)℄ :Consider a risk reversal at-the-money forward (� = 0), in the 
ase where J > J? almost surely.Then, �PBS(0) = �1=2, and lim�!0RR(Fe�p�)=� = 0. In other words, disaster risk generatesnon-trivial risk reversals only for strikes away from the money.Risk reversals on the 
urren
y pair (home, foreign) essentially 
apture the relative loadings ondisaster risk of the home 
urren
y and the foreign 
urren
y in the following sense. If the distributionof J? de
reases in a �rst order sto
hasti
 dominan
e sense (if the foreign 
urren
y bears more 
rashrisk), then the value of the risk reversal is weakly higher (lim�!0RR(Fe�p�)=� is weakly higher).We 
an also 
onsider strikes that do not s
ale as �p� in the limit of short time horizons. Ifinstead the strike is 
onstant at K > 0, the delta of the 
orresponding put option is equal to �1.The pri
e of deep out-of-the money risk reversals is then:lim�!0RR(K)=� = pE [(K�1J � J?)+ � (K�1J? � J)+] : (7)We 
on
lude with a Proposition linking risk reversals to interest rates.Proposition 4. In the domain where the foreign 
ountry has more disaster risk than the home
ountry (J > J�), 
eteris paribus, the more the foreign 
ountry is exposed to disaster risk (thelower is J? in �rst order sto
hasti
 dominan
e sense), the higher are the interest rate di�erentialr � � r and the short-maturity risk reversal.Proposition 4 is natural. Riskier 
ountries should have higher interest rates as we saw above, andthey should have higher pri
es of put premia, as they bear important 
rash risk: their risk reversalsare higher. An analogous proposition naturally holds if the foreign 
ountry has less disaster riskthan the home 
ountry. 18



3 EstimationThe theoreti
al results presented in the previous se
tion guide our empiri
al work on 
arry tradereturns. From a methodologi
al perspe
tive, the model has two main impli
ations: 
urren
y ex
essreturns in
rease with interest rates, and 
urren
y options allow the estimation of disaster riskpremia. We follow these two insights. Be
ause the forward premium puzzle implies that riskpremia are time-varying, we build portfolios of 
urren
y ex
ess returns by sorting 
ountries on theirinterest rates. By doing so, we obtain 
urren
y ex
ess returns that are signi�
antly di�erent fromzero and 
apture expe
ted ex
ess returns from 
urren
y markets. We apply this methodology tounhedged and hedged 
urren
y ex
ess returns. As a result, we obtain the empiri
al 
ounterpartsto the expe
ted ex
ess returns des
ribed in the previous se
tion. Using the 
losed-form expressionsderived in the previous se
tion, we estimate the market 
ompensation for 
rash risk.3.1 DataWe �rst des
ribe our dataset and how we build 
urren
y portfolios, and then turn to our results ondisaster risk premia. We start o� with spot, forward and option 
ontra
ts on 
urren
y markets.Spot, forward and 
urren
y options. All ex
hange rates in our sample are in US dollar per foreign
urren
y. As a result, an in
rease in the ex
hange rate 
orresponds to an appre
iation of the foreign
urren
y and a de
line of the US dollar. For ea
h 
urren
y, our sample presents spot and forwardex
hange rates at the end of the month and implied volatilities from 
urren
y options for the samedates. We 
onsider one-month forward rates and options with one-month maturity. Longer term
ontra
ts are available but mu
h less traded. We 
onstru
t foreign interest rates using forward
urren
y rates and the US LIBOR, assuming that the 
overed interest rate parity 
ondition holds.18Options are quoted using their Bla
k and S
holes implied volatilities for �ve di�erent deltas.19Our sample 
omprises far out-of-the money puts (denoted 10-delta puts), out-of-the money puts(denoted 25-delta puts), at-the-money puts and 
alls, out-of-the money 
alls (denoted 25-delta
alls) and far out-of-the money 
alls (denoted 10-delta 
alls) for the 1996-2008 period.20 Figure 418In normal 
onditions, forward rates satisfy the 
overed interest rate parity 
ondition (CIP): forward dis
ounts, e.g.the log di�eren
es between forward and spot rates, equal the interest rate di�erentials between two 
ountries. Akram,Rime and Sarno (2008) study high frequen
y deviations from CIP. They 
on
lude that CIP holds at daily and lowerfrequen
ies.19Jorion (1995), Carr and Wu (2007) and Corte, Sarno and Tsiakas (2009) study the features of these 
urren
yoptions.20By using data from the Chi
ago Mer
antile Ex
hange, we 
ould have extended the sample to 1986 for three
urren
ies (Canadian dollar, Swiss fran
 and yen) and to 1994 for two others (Australian dollar and British pound).Unfortunately CME data do not provide at ea
h date a 
onstant variety of option strikes, whi
h is 
ru
ial for ourestimation pro
edure. 19



presents, for example, the implied volatilities of the 
urren
y options in our sample at the end ofAugust 2008. If the underlying risk-neutral distributions of ex
hange rates were purely lognormal,these lines would be 
at: implied volatilities would not di�er a
ross strike pri
es. This is 
learly notthe 
ase here. Note for example that the implied volatility 
urve is de
reasing for Australia or NewZealand - two high interest rate 
ountries at that time, and in
reasing for Japan or Switzerland -two low interest rate 
ountries. These 
urves signal departures from the normality assumption. Letus take a simple example. A high implied volatility for an out-of-the money 
all option implies thatthe probability of a foreign 
urren
y appre
iation is higher than in a normal distribution. At theend of August 2008, option pri
es re
e
t large probabilities of appre
iation for the Japanese yenand Swiss fran
, and large probabilities of depre
iation for the Australian and New Zealand dollars.These expe
ted 
hanges a
tually o

urred in the next months.Using these spot, forward and option 
ontra
ts, we now build unhedged and hedged 
urren
yex
ess returns following the de�nitions presented in se
tion 2.4.Portfolios of unhedged and hedged 
urren
y ex
ess returns. For ea
h individual 
urren
y, we
onstru
t the 
orresponding ex
ess return from the perspe
tive of a US investor. We 
onsider two
ases: the US investor goes either long or short on the foreign 
urren
y. In ea
h 
ase, we build thehedged ex
ess return obtained by buying prote
tion on the option market against an unfavorable
hange in the foreign 
urren
y. When the US investor is long on the foreign 
urren
y, he buys aput 
ontra
t, thereby prote
ting himself against a depre
iation of the foreign 
urren
y. When he isshort, he buys a 
all 
ontra
t. Again, the strike pri
e of these options 
ontra
ts is either far out ofthe money (at 10-delta), out of the money (at 25-delta) or at the money.We sort 
urren
ies on their forward dis
ounts and allo
ate them into three portfolios, rebalan
ingevery month. The �rst portfolio 
ontains the lowest interest rate 
urren
ies, while the last portfolio
ontains the highest interest rate 
urren
ies. By sorting 
urren
ies on their risk 
hara
teristi
s, wefo
us on sour
es of risk and we average out idiosyn
rati
 variations. When 
omputing portfolioaverages, we use equal weights for all 
urren
ies. We obtain average 
urren
y ex
ess returns,average implied volatilities, and average risk reversals for ea
h portfolio.21The 
onne
tion with the theory developed in Se
tion 2 is as follows. The di�erent 
ountries areindexed by i 2 I. A state variable 
t des
ribes the state of the world at date t. This state variablefollows an arbitrary stationary sto
hasti
 pro
ess. All the parameters of the model are arbitraryfun
tions of 
t: p, gi , Ji , 
ov("i ; "j). Correspondingly all the 
omputed variables ri , Xei , Xe(�)i ,21Note that the hedge strategy requires buying one option for every 
urren
y in the portfolio. In essen
e, thisamounts to buying prote
tion against adverse movements of every 
urren
y in the portfolio against the US dollar.Another potentially interesting strategy 
onsists in buying a single option to prote
t against an adverse movement ofthe basket of 
urren
ies in this portfolio. However, we do not have data on basket options. Therefore, we do notpursue that route. 20



�Di , �Gi depend on 
t. Underlying our portfolios are three state-dependent sets, I1(
t), I2(
t),and I3(
t).High interest rates ri 
an be due to high values of g i or low values of pE[Ji � 1℄. If disaster riskis an important determinant of 
ross-
ountry variations in interest rates, then a portfolio formed bysele
ting 
ountries with high interest rates will on average sele
t 
ountries that feature high disasterrisk, �E[Ji ℄. The empiri
al analysis below will indeed 
on�rm that this is the 
ase.Sample. Our data set 
omes from JP Morgan. It 
ontains 32 
urren
ies: Argentina, Australia,Brazil, Canada, Switzerland, Chile, China, Columbia, Cze
h Republi
, Denmark, Euro Area, UnitedKingdom, China Hong Kong, Indonesia, Israel, India, Japan, South Korea, Mexi
o, Malaysia,Norway, New Zealand, Peru, Philippines, Poland, Sweden, Singapore, Thailand, Turkey, Taiwan,Venezuela, and South Afri
a. Following the World E
onomi
 Outlook (IMF, 2008) 
lassi�
ation,we split the sample between advan
ed 
ountries and emerging 
ountries.22There are two main reasons to fo
us on advan
ed 
ountries: the higher liquidity of their optionmarkets and the normality of their returns. We fo
us here on normality tests and investigate laterthe impa
t of transa
tion 
osts.Our model implies that, as long as a 
urren
y 
rash does not o

ur in sample, 
hanges inex
hange rate are 
onditionally normally distributed. We 
he
k this impli
ation in our data, limiting�rst our attention to the 1/1996 - 8/2008 period. We ex
lude the last four months of our samplebe
ause, during the fall of 2008, high interest rate 
urren
ies depre
iated and low interest rate
urren
ies appre
iated sharply. Carry trades thus paid very badly in the fall of 2008, when worldwide sto
k markets tumbled and liquidity dried up. We take the view that this period representsan example of disasters in our sample and will pay spe
ial attention to this parti
ular period in thenext se
tion. For now, we ex
lude it from our sample.Table 9 in Appendix C reports higher moments of 
hanges in ex
hange rates, and the standardJarque and Bera (1980) and Lilliefors (1967) normality tests for ea
h 
urren
y available over thisperiod. The left panel fo
uses on advan
ed 
ountries. Bootstrapping the skewness and kurtosisstatisti
s, we �nd that the sample values are not signi�
antly di�erent to the Gaussian ones for all
ountries, ex
ept for South Korea and Singapore. The Lilliefors test leads to the same 
on
lusion.The Jarque-Bera test reje
ts normality more often (adding UK and Japan to the list above), but thetest is known to over-reje
t in short samples. The 
omparison with the right panel, whi
h fo
useson emerging 
ountries, is striking. There, most ex
hange rate distributions di�er from normality.Most reje
tions 
ome from high kurtosis.23 If we in
lude fall 2008 in our sample, the re
ent large22The Word E
onomi
 Outlook 
lassi�
ation 
ombines three 
riteria: (i) per 
apita GDP, (ii) export diversi�
ation,and (iii) global integration into the global �nan
ial system.23We also report, in Appendix C, higher moments and normality tests for our portfolios of 
urren
y ex
ess returns. In21




hanges in ex
hange rates lead to reje
tion of the normal distribution even for many advan
ed
ountries.Our model implies that 
onditional 
hanges in ex
hange rates are normal. Yet, the normalitytests reported so far are un
onditional, and ex
hange rates tend to exhibit time-varying volatility. Totake into a

ount su
h heteros
edasti
ity, we estimate a GARCH(1,1) model for ea
h 
urren
y. Wethen run normality tests on ex
hange rate 
hanges normalized by their volatility. To save spa
e, wereport results in Table 10 in Appendix C. After the GARCH(1,1) 
orre
tion, all advan
ed 
ountries,ex
ept South Korea, exhibit 
onditionally Gaussian ex
hange rates in our sample. Most emerging
ountries, however, still fail normality tests.As a result, we fo
us here on our sample of advan
ed 
ountries (ex
luding South Korea) over the1/1996-8/2008 period.24 We turn now to our main empiri
al results. Note that results obtainedwith the whole sample of advan
ed and emerging 
ountries are reported in Appendix C as robustness
he
ks. We also 
onsider, in the appendix, a smaller sample of the nine most advan
ed 
ountriesas in Jurek (2008).3.2 ResultsWe �rst present the key 
hara
teristi
s of our 
urren
y portfolios and then fo
us on measures ofdisaster risk premia.Portfolio Chara
teristi
s. Forming portfolios is a way to 
ompute moments 
onditional on thethree sets I1, I2 and I3. Of parti
ular interest to us will be three of these moments: the return of
arry trade, and the 
orresponding disaster and Gaussian risk premia. For instan
e, the expe
tedreturn on portfolio k is simply the average return over the 
ountries in the portfolio:Xek = E [∑i2Ik (
t)Xei (
t)#Ik(
t) ] :Similarly, the expe
ted hedged return on portfolio k is:Xek(�) = E [∑i2Ik (
t)Xei (
t)(�)#Ik(
t) ] :Table 1 reports average 
urren
y ex
ess returns that are either unhedged, hedged at 10-delta,our ben
hmark sample of advan
ed 
ountries, the Lilliefors test 
annot reje
t the normality assumption for any of ourportfolios. In our large sample of advan
ed and emerging 
ountries, however, the high interest rate portfolios exhibitfat tails and thus 
learly depart from normality.24Our sample thus 
omprises Canada, Switzerland, Cze
h Republi
, Denmark, Euro Area, United Kingdom, Israel,Japan, Norway, New Zealand, Poland, Sweden, Singapore, Thailand.22



hedged at 25-delta or hedged at the money. Average 
urren
y ex
ess returns in
rease monotoni
allyfrom the �rst to the last portfolio. This is not a surprise: we know from the empiri
al literature onthe un
overed interest rate parity that high interest rate 
urren
ies tend to appre
iate on average.As a result, investors in high interest rate 
urren
ies gain both the interest rate di�erential and theforeign ex
hange rate appre
iation. Hedging downside risks de
reases average returns. An hedgeat 10-delta prote
ts the investor against large drops in foreign 
urren
ies, while an hedge at themoney prote
ts the investor against any depre
iation of the foreign 
urren
y: the latter insuran
eis obviously more expensive be
ause it 
overs more states of nature and thus leads to lower ex
essreturns.For ea
h portfolio, we also report in Table 2 the average implied volatility at di�erent strikes.One result stands out: the average implied volatility of high interest rate 
urren
ies (eg portfolio3) is mu
h higher for out-money put options than for other strikes and other portfolios. Optionmarkets pri
e a large depre
iation risk for high interest rate 
urren
ies. The same insight is apparentin risk reversals.The last panel of Table 2 presents average risk reversals at 10 and 25-deltas:RRk = E [∑i2Ik (
t)RRi(
t)#Ik(
t) ] :Re
all that risk reversals 
orrespond to positions that are long put and short 
all options. As aresult, higher risk reversals indi
ate higher probabilities of depre
iation for the foreign 
urren
y. Wereport risk reversals quoted in implied volatilities. As in the model, risk reversals in
rease monoton-i
ally with interest rates. Higher interest rate 
urren
ies have higher probabilities of depre
iation.This result is in line with the premises of our model whi
h introdu
es the risk of large depre
iationsin 
urren
y markets.The strong link between interest rates and risk reversals suggests a 
omparable sorting, usingrisk reversals instead of interest rates. Underlying this 
onstru
tion are three di�erent portfolio sets,with their 
orresponding 
onditional moments. Here again, we obtain a monotoni
ally in
reasing
ross-se
tion of ex
ess returns. Table 3 reports hedged and unhedged average ex
ess returns.Countries with higher risk reversals tend to o�er higher 
urren
y returns on average. The di�eren
ebetween the last and �rst portfolio returns is lower than in our previous portfolios, but it is still
learly signi�
ant.We now turn to the dire
t estimation of the market's 
ompensation for bearing disaster risk.Disaster risk premia. In order to estimate disaster risk premia, we fo
us on a zero-investmentstrategy that goes long on high interest rate 
urren
ies and short on low interest rate 
urren
ies.23



This strategy 
orresponds to usual 
urren
y 
arry trades.The expe
ted return of the 
arry trade is: Xe = Xe3 � Xe1. It 
an be de
omposed as the sumof a disaster risk premium �D and a Gaussian risk premium �G. The disaster risk premium is thedi�eren
e between the average disaster risk premium in portfolio 3 and the average disaster riskpremium in portfolio 1:�D = E [∑i2I3(
t) �Di (
t)#I3(
t) ]� E [∑i2I1(
t) �Di (
t)#I1(
t) ] :Similarly, the Gaussian risk premium is the di�eren
e between the average disaster Gaussianpremium in portfolio 3 and the average Gaussian risk premium in portfolio 1:�G = E [∑i2I3(
t) �Gi (
t)#I3(
t) ]� E [∑i2I1(
t) �Gi (
t)#I1(
t) ] :The average unhedged return of this strategy is equal to 6:5 per
ent per year in our sample.It 
orresponds to the sum of the average return on the third portfolio in the left panel of Table 1(when the investor is long on the foreign 
urren
y) and the �rst portfolio in the right panel (whenthe investor is short on the foreign 
urren
y). We also report hedged 
arry trades at 10-delta,25-delta and at the money. They 
orrespond to Xe(�) = Xe3(�)�Xe1(�). The �rst panel of Table4 presents these average 
arry ex
ess returns and their standard errors. The latter are obtainedby bootstrapping the monthly ex
ess returns under the assumption that they are i.i.d. As a result,these standard errors take into a

ount the short sample size. Carry ex
ess returns that are eitherunhedged or hedged at 10-delta and 25-delta are statisti
ally di�erent from zero. Carry hedged atthe money are positive but not signi�
ant. The di�eren
es between unhedged and hedged returnsare all positive and signi�
ant.The se
ond panel of Table 4 reports stru
tural estimates of the disaster risk 
omponent (�D)and the Gaussian risk 
omponent (�G). We start with simple estimates that only requires 
omputingaverages, and then we turn to GMM estimates.Unhedged ex
ess returns 
orrespond to the sum of �D and �G. As derived in the previousse
tion, hedged ex
ess returns are approximately equal to �G multiplied by a 
orre
tion fa
torrelated to the delta of the option. To estimate �D and �G, we �rst 
orre
t ea
h average hedgedreturn for its delta 
omponent: X̂e(�) = Xe(�)=(1 + ��);where Xe(�) 
orresponds to the average 
arry return hedged at delta � (� = 10, 25 or at themoney) and �� denotes the option delta (respe
tively equal to �0:1, �0:25 and �0:5). Se
tion24



2.5 shows that the expe
ted value of ea
h X̂e(�) is simply �G. So, we form our estimate of theGaussian risk premium as a simple, weighted average of the delta-
orre
ted hedged 
arry tradereturns:25 �̂G = ∑�2I X̂e(�)#I ; (8)where #I is the number of hedged ex
ess returns 
onsidered. For instan
e, when we use at themoney options only, #I = 1, while when we use 10-delta, 25-delta and at the money options,#I = 3.As warranted by the analysis in se
tion 2.5, our estimate of the disaster risk premium is theaverage unhedged 
arry trade return, Xe, minus the estimate of the no-disaster premium:�̂D = Xe � �̂G : (9)We report four sets of estimates obtained using the methodology above and four di�erentsets I of hedged returns: 10-delta (�rst 
olumn), 25-delta (se
ond 
olumn), at-the-money (third
olumn) hedged returns, along with the previous three hedged returns 
ombined together (fourth
olumn). Note that we estimate two risk premia, �D and �G , using either 2 (�rst, se
ond and third
olumns), or 4 moments (fourth 
olumn). Again, standard errors are obtained by bootstrapping themonthly ex
ess returns under the assumptions that they are i.i.d. Depending on the spe
i�
ation,Gaussian risk premia range from 3.4 to 5.3 per
ent. Disaster risk premia amount to 1.2 to 3.1per
ent annually. They a

ount for approximately 20 per
ent to 50 per
ent of the average 
arrytrade returns in our sample. The lower estimate is obtained when using only far out-of-the-moneyoptions. Disaster risk premia are signi�
antly di�erent from zero in all 
ases, ex
ept when usingsolely at the money options.Our previous estimates of disaster risk premia, obtained with simple averages, 
orrespond to theminimization of the sum of squared di�eren
es between empiri
al and theoreti
al ex
ess returns.We now turn to Hansen (1982)'s GMM estimates of disaster risk premia. We use all the availableunhedged and hedged ex
ess returns and thus have four moments to estimate two parameters. Theother 
ases reported before are just-identi�ed with two moments to determine two parameters.2625This estimate 
orresponds to the minimization of:(Xe � �D � �G)2 +∑�2I (X̂e(�)� �D)2:26This estimate 
orresponds to the minimization of g0TW�1gT ; whereW is the varian
e 
ovarian
e matrix of all hedgedand un-hedged returns, and gT des
ribes all moment 
onditions: gT = [(Xe ��D��G); (X̂e(�1)��D); :::; (X̂e(�3)��D)℄. If W�1 = A0A, the estimate minimizes g0TA0AgT . This 
orresponds to the `square' of linear 
ombinations ofour original moments. As a result, the minimization does not imply that Xe = �D + �G. The J-statisti
 is equal togT var(gT )�1gT � �2(#moments �#parameters), 
f Co
hrane (2005).25



In order to weight the di�erent moments, we use the 
ovarian
e matrix of all hedged and un-hedged returns. We do not use a spe
tral density matrix be
ause of the short length of our sample.We obtain a disaster risk premium of 1 per
ent (with a standard error of 0.36), and a Gaussianrisk premium of 4:77 (with a standard error of 1.92). The disaster risk premium obtained withall hedged returns is 
lose to the one obtained with 10-delta returns. This happens be
ause thestandard deviation of delta-
orre
ted at the money-hedged returns is mu
h higher than the otherones. As a result, the GMM estimation under-weights this moment, whi
h previously delivered thehigher estimate of disaster risk premia. Note also that the GMM estimation does not impose thatunhedged ex
ess returns are the sum of disaster and Gaussian risk premia.We 
he
k our results on di�erent portfolios, whi
h use either di�erent sorts or di�erent 
ountries.We obtain similar results on portfolios of 
urren
y ex
ess returns sorted on risk reversals. Re
allthat these portfolios deliver a monotoni
 
ross-se
tion of returns, o�ering a 
arry ex
ess return of3.2 per
ent annually. Table 5 reports estimates of the 
orresponding Gaussian and disaster riskpremia. The former varies from 1.3 to 1.7 per
ent. The latter range from to 1.5 to 1.9 per
ent.Again, all estimates, ex
ept the one using solely at the money options, are statisti
ally signi�
ant.Disaster risk premia a

ount for approximately 40 to 60 per
ent of the long-short returns on theserisk-reversal-based portfolios.As robustness 
he
ks, we 
onsider two additional samples: either all the developed and emerging
ountries in our dataset, or a subset of nine developed 
ountries (Australia, Canada, Switzerland,Euro area, United Kingdom, Japan, Norway, New Zealand, and Sweden). We obtain very similarestimates on this small sample of developed 
ountries as before on our larger sample of advan
ed
ountries. We report them in Table 13. Using GMM, we obtain a disaster risk premium of 1.1per
ent, whi
h a

ounts for 25% of the 
arry trade returns. We obtain somehow lower disaster riskpremia on our large sample of advan
ed and emerging 
ountries. Table 14 in Appendix C reportsaverage 
urren
y ex
ess returns a
ross portfolios when we sort 
ountries on interest rates. Table15 presents implied volatilities and risk reversals. Table 16, also in Appendix C, reports estimates ofdisaster risk premia. Disaster risk a

ounts for 5 to 25 per
ent of the average 
arry trade, less thanin the sample with only advan
ed 
ountries. Emerging markets, however, present lower liquidityand higher bid-ask spreads. As we show below, taking these transa
tion 
osts into a

ount helpsre
on
ile the results obtained on both samples.We view these estimates of disaster risk premia as the main empiri
al 
ontribution of this paperbe
ause they are derived within a theoreti
al framework that allows us to in
orporate a varietyof options. We draw two 
lear 
on
lusions from this experiment. First, disaster risk is pri
ed on
urren
y markets. Se
ond, there are signi�
ant di�eren
es in the amounts of disaster risk a
ross
ountries. If all 
ountries bore the same amount of disaster risk, it would 
an
el out in our long-short26



ex
ess returns.The estimate of disaster risk premia �D is higher when using at-the-money options rather thanout-of-the money options. In light of the model, out-of the-money options seem \too 
heap"
ompared to at-the-money options. Note, however, that di�eren
es in disaster risk premia a
rossthese options are not statisti
ally signi�
ant. The GMM estimate is 
learly very 
lose to the 10-delta one. Take for example the latter as ben
hmark. The other estimates, obtained using simpleaverages, di�er by 0:47, 1:94 and 0:80 per
entage points (
f Table 4). But the 
orrespondingstandard errors on these di�eren
es are 0:59, 1:50 and 0:69 per
entage points. Therefore, theestimates of disaster premia are not statisti
ally di�erent a
ross strikes. With this 
aveat in mind, weturn to potential explanations for these di�erent point estimates. We see three possible explanations:illiquidity, 
ounterparty risk, and model misspe
i�
ation.The illiquidity explanation goes as follows: the JP Morgan market maker simply gives indi
ativepri
es by using the Bla
k-S
holes formula (whi
h generates a low option pri
e), but there is littletrading of out of the money options. If someone wanted to aggressively buy these options, he wouldmove pri
es against him, and pay higher pri
es. So the potential trading pri
es are higher than theindi
ative pri
es we have in our data for 
urren
ies.In the 
ounterparty risk explanation, the seller of a put might a
tually default during a disaster.Put premia take that risk into a

ount, and are lower than in the model. This issue, of 
ourse,a�e
ts not only 
urren
y options, but also sto
k options, 
redit default swaps and the like. Weexpand on this issue in se
tion 3.4.Finally, the model may simply be misspe
i�ed. The model might generate too small a risk-neutralprobability for small depre
iations. One way to in
orporate this possibility in our model would beto allow for two kinds of disasters: large disasters and small disasters. In su
h a spe
i�
ation, out-of-the money options o�er no prote
tion against small disasters, and would therefore be 
heaper
ompared to at the money options.We do not attempt to enri
h the model to 
apture liquidity and 
ounterparty risks or smalldisasters. We leave this for future resear
h. In this paper, we fo
us on the most simple modelthat is not reje
ted by the data. We 
an formally test if the model is reje
ted with our GMMestimation. Following Hansen (1982), we 
ompute the J-test of the model's pri
ing errors. Thisstatisti
 is distributed as a Chi-square with two degrees of freedom. The J-statisti
 is 2:51, leadingto a p-value of 0:28. The model is thus not reje
ted in our sample.3.3 Transa
tion CostsSo far, our estimates of disaster risk premia do not take into a

ount bid-ask spreads on 
urren
ymarkets. Transa
tion 
osts on forward and spot 
ontra
ts would redu
e unhedged ex
ess returns.27



Transa
tion 
osts on 
urren
y options would in
rease insuran
e 
osts against disasters. As a result,these 
osts would in
rease the share of disaster risk premia. In this respe
t, the numbers previouslyreported in this paper 
onstitute a lower bound.Bid and ask spreads are not available in the JP Morgan dataset. For the spot and forwardmarkets, we rely on Reuters daily quotes available on Datastream. Measured in our sample, thesequotes imply average spreads (divided by the mid rate) of 9 basis points for forwards and 8 basispoints for spot rates. When implementing 
arry trades through forward markets, investors who golong on high interest rate 
urren
ies buy forward 
ontra
ts at the ask pri
e. When they re
eive the
orresponding foreign 
urren
ies at the end of the 
ontra
t, they 
onvert their pro
eeds ba
k intoUS dollars at the bid pri
e. As a result, they in
ur half the bid-ask spread on both the forward andspot 
ontra
ts. Assuming a spread of 8 basis points and 12 trades per year, the annual 
ost is equalto around 100 basis points or 1%. Gilmore and Hayashi (2008) argue that su
h spreads overstatetransa
tion 
osts on 
urren
y markets be
ause investors might roll over their positions ea
h monthinstead of 
losing them to re-open them the next day. With an example based on the South Afri
anrand, they show that forward markets imply an annual 
arry 
ost of 192 basis points, whereas rollingover positions would 
ost only 13 basis points, eg 15 times less (
f Appendix 2 of their paper). Thisestimate, however, assumes that a given 
urren
y remains in the 
arry portfolio for �ve years, andthus underestimates the 
osts due to portfolio rebalan
ing. As a result, we assume that the averagea
tual transa
tion 
osts on our unhedged 
arry portfolio are in between these two estimates. Wetake an annual value of 0.25% for advan
ed 
ountries and 2% for emerging 
ountries.In order to assess transa
tion 
osts on 
urren
y option markets, we unfortunately do not havea

ess to time-series of bid-ask spreads on these markets. To obtain an order of magnitude, we
olle
ted bid-ask spreads on November 10, 2008 and January 20, 2009 for di�erent 
urren
y pairs.27Table 12 presents these bid-ask spreads on 
urren
y options quoted in terms of implied volatilities.Due to the subprime mortgage 
risis, implied volatilities are mu
h higher than in the rest of oursample. For most 
urren
y pairs, implied volatilities in November 2008 are more than twi
e theirsample means. A

ording to market parti
ipants, bid-ask spreads in November 2008 are also mu
hhigher than in our sample. These spreads rea
h 30 per
ent of the underlying mid-point (mean ofbid and ask) values for out-of-the money options on emerging market 
urren
ies. Bid-ask spreadsare mu
h tighter for the 
urren
ies of the most advan
ed 
ountries. In January 2009, most impliedvolatilities are lower, but spreads remain around 10 per
ent. A

ording to market parti
ipants,these spreads are abnormally large. To estimate the impa
t of transa
tion 
osts on our results, weassume bid ask spreads of 5 per
ent for advan
ed 
ountries and 10 per
ent for the others. As aresult, spreads widen when implied volatilities in
rease, but not fully to the levels observed during fall27We thank the Bank of Fran
e for sharing these data with us.28



2008. We 
onvert these implied volatilities spreads into bid-ask pri
es and estimate again hedgedex
ess returns.We test the robustness of our results to the in
lusion of these transa
tion 
osts. As expe
ted,transa
tion 
osts in
rease the share of disaster risk; the results are reported in Table 6 . Gaussianrisk premia now range from 2.8 to 5.7 per
ent. Disaster risk premia range from 1.3 to 4.4 per
entannually, a

ounting for approximately 25 per
ent to 70 per
ent of the average 
arry trade in oursample. All these estimates are signi�
antly di�erent from zero. Using GMM, we obtain a disasterrisk premium of 1.3 per
ent. It represents one-fourth of the 
arry trade ex
ess returns. We 
onsiderthis value as our best estimate of the 
ompensation for disaster risk 
onsidering the data available.It is, however, a lower bound be
ause it does not take into a

ount default probabilities on optionmarkets.3.4 Counterparty RiskSo far we have assumed that there is no 
ounterparty risk for options. However, it is reasonableto think that the seller of a put might default with some probability � if a disaster o

urs. In that
ase, an agent engaging in hedged 
arry trade still bears some disaster risk. Indeed, the expe
tedex
ess return of the hedged 
arry trade is then:Xehedged = (1 + �)�G + ��D:Sin
e with probability � the agent is exposed to disasters, the 
ompensation for the disaster risk isthen ��D.Our estimation to un
over disaster risk premia needs to be amended as follows:�D = Xe �Xe(�)=(1 + ��)1� �=(1 + ��) (10)For instan
e, take the 
ase of deep out of the money options (� = �0:1). Equation (10)shows that the estimate of �D that does not take into a

ount 
ounterparty risk needs now to bemultiplied by approximately 1=(1�1:1�). When � = 0:1, �D is multiplied by 1.12. When � = 0:25,it is multiplied by 1.38.This se
tion demonstrates that 
ounterparty risk 
an substantially in
rease our estimate ofdisaster risk premia. However, we la
k data to pin down default probabilities on option markets.As a result, our estimate of disaster risk premia should be 
onsidered as a lower bound. Oneapproa
h to estimate default probabilities 
ould be to use information from the 
redit default swapor 
orporate bond markets, but it is beyond the s
ope of this paper and we leave it for further29



resear
h. Instead, we now 
ompare our estimate of disaster risk premia to the ma
roe
onomi
literature on disasters, starting with a 
ase study of fall 2008.3.5 Fall 2008 and Comparison with Barro and Ursua (2008)We view this re
ent period as the unique example of disaster in our data. As noted earlier, itsin
lusion in our sample is enough to reje
t the normality assumption for many 
ountries. In thisse
tion, we provide a brief des
ription of what happened in 
urren
y markets. Both spot and optionmarkets support the 
hara
terization of this period as a �nan
ial disaster.Fall 2008 In our sample, fall 2008 stands out as the worst time for 
arry traders. This is obviousfor spe
i�
 
urren
ies, but also holds for 
urren
y portfolio returns. We start with a simple exampleusing two bilateral ex
hange rates; the New Zealand dollar is a high interest 
urren
y, while theJapanese yen is a low interest rate one. Figure 5 plots monthly 
hanges in these ex
hange ratesvis-a-vis the US dollar. We start our graph at the beginning of the subprime 
risis; the sampleperiod is thus 7/2007 - 12/2008. Clearly, the Japanese yen appre
iated and the New Zealand dollardepre
iated during that period, with both movements hurting 
arry traders. The same �gure alsoreports the return index on a 
arry trade strategy that borrows in yen to invest in the New Zealanddollar. The index starts at 100 in July 2007. At the end of De
ember 2008, the index is slightlyabove 60, and most of the losses have o

urred in the last four months of the sample. Theselosses are not spe
i�
 to the New Zealand dollar - Japanese Yen pair. We obtain similar resultswith our baskets of 
urren
ies. The average return of our 
arry trade strategy was -4.5 per
ent inthe fall 2008, for a 
umulative de
line from September to De
ember that amounts to 17.8 per
ent.This is a large drop, as the standard deviation of monthly returns over the whole sample is just 2per
ent. Almost all of the 17.8 per
ent de
line is due to losses on high interest rate 
urren
ies,whi
h depre
iated sharply.Similar 
on
lusions arise form 
urren
y options. Large 
hanges in ex
hange rates triggeredexer
ise of 
urren
y options that some 
arry traders might have bought. Figure 6 plots the frequen
yof 
all and put options exer
ised on 
urren
ies allo
ated in the �rst and last portfolios, respe
tively.At ea
h point in time, the frequen
y is obtained as the number of options exer
ised divided bythe number of 
urren
ies in the portfolio at that time. Re
all that the �rst portfolio 
ontains lowinterest rate 
urren
ies, and thus funding 
urren
ies. Investors want to buy 
all options to insurethemselves against large appre
iations of su
h 
urren
ies. The last portfolio 
ontains high interestrate 
urren
ies. There, investors 
onsider put options. The �gure shows 
learly that the frequen
yof 10-delta put options exer
ised rea
hes an all-time high in the fall of 2008. The proportion of 
alloptions triggered was also high, but not at its maximum value in the sample.30



These very low returns on 
urren
y markets o

urred in bad times for US investors. Duringfall 2008, the US sto
k market de
lined by 33 per
ent, a

ording to the MSCI index.28 Figure7 
ompares equity and 
urren
y ex
ess returns over our sample. The 
orrelation between theseex
ess returns is parti
ularly high, rea
hing 0.7 sin
e the start of the subprime mortgage 
risis inJuly 2007.Standard risk measures beyond those from equity markets point in the same dire
tion in oursample: the equity option-implied volatility index VIX, its bond equivalent MOVE and 
redit spreadswere at an all-time high in the fall of 2008. Figure 8 presents all these variables in a standardizedway: 
urren
y returns and risk measures are all demeaned and divided by their standard deviations.The events of fall 2008 represent up to �ve standard deviations in these series. Very low ex
essreturns (�ve standard deviation below their means) happened exa
tly when volatilities and 
reditspreads were high (�ve standard deviation above their means), eg in bad times. Our sample inthis paper is short, but our �ndings are in line with the literature. As Lustig et al. (2008) show,
arry trades tend to pay poorly during times of 
rises, exa
tly when sto
k markets tank. This high
orrelation between sto
k and 
urren
y markets also o

urred during the 1987 sto
k market 
rashand the Mexi
an, Asian and Russian 
rises. These market-based indi
es o�er real-time measuresof risk that 
omplement less �nan
ial approa
hes to the investors' marginal utilities, linked to real
onsumption growth rates. Figure 9 fo
uses on 
onsumption growth and the same 
on
lusionemerges here. Preliminary estimates of US national a

ount statisti
s point towards an annualizedde
rease of 4.3 per
ent in real personal 
onsumption expenditures in the fourth quarter of 2008,after an annualized de
rease of 3.8 per
ent in the third quarter. These sho
ks represent more thanthree-standard deviation de
lines in the mean 
onsumption growth rate. As reported in Lustig andVerdelhan (2007) on an earlier sample, low 
arry trade ex
ess returns tend to o

ur in times of low
onsumption growth.Finally, note that the link between risk reversals and subsequent 
urren
y appre
iations di�ersduring 
risis and normal times. In normal times, a

ording to the model, high risk reversals shouldpredi
t foreign 
urren
y appre
iations. Using a
tual data, we did not �nd signi�
ant predi
tabilitythough. During 
risis, high risk reversals should predi
t foreign 
urren
y depre
iations. This is whathappens during the fall of 2008: foreign 
urren
y depre
iations seem to follow high risk reversals.This behavior is line with the model, if we interpret the fall of 2008 as a disaster. The eviden
e isof 
ourse very limited be
ause we have only one disaster in our sample. As a 
onsequen
e, we donot attempt to quantify this point, but simply present, in Figure 10, ex
hange rate appre
iationsand risk reversals for ea
h month and ea
h 
urren
y in the fall of 2008.28The 
losest event to this very strong de
line in equity and 
urren
y returns is the 1987 sto
k market 
rash. FromSeptember to November 1987, the US sto
k market lost 32.6 per
ent. This period is not in our sample sin
e we donot have 
urren
y option data before January 1996. 31



A

ording to many markets and risk fa
tors, the fall of 2008 
onstitutes a disaster. We use thisexample to 
onne
t our �ndings to the previous ma
roe
onomi
 literature on disasters.
A Comparison with Barro and Ursua (2008) In a disaster, the SDF is multiplied by an amountJ. To relate it to more primitive e
onomi
 quantities, we use the model of Farhi and Gabaix(2008). In that model, J = B�
F , where B�
 is the growth of real marginal utility during adisaster, and F is the growth of the value of one unit of the lo
al 
urren
y in terms of internationalgoods during the same disaster. Hen
e, �D = pE[J℄1 � pE[J℄3 = pE[B�
(F )℄1 � pE[B�
(F )℄3.Therefore, the disaster risk premium depends on the probability of disasters p, the relative valueof the SDF B�
 and the payo� of the 
arry trade in disasters through the suÆ
ient statisti
pE[B�
(F )℄1� pE[B�
(F )℄3. Using the episode of fall 2008 to 
alibrate the value of F 1� F 3 andassuming away a potential 
orrelation between B�
 and F 1 � F 3 we 
an shed some light on thetypi
al value of pB�
 . This exer
ise should be viewed as a ba
k of the envelope 
al
ulation ratherthan a rigorous estimate, sin
e our inferen
e of F 1 � F 3 relies on a single disaster, whi
h is stillunfolding at the time of the writing of this paper. As a result, we 
annot observe the full path tore
overy, and as Gourio (2008) shows, we might overestimate the impa
t of disasters. With this
aveat in mind, if we retain a value of F 1�F 3 of 20%, a value of pE[B�
 ℄ of 6:5% is ne
essary togenerate the disaster risk premium �D that we estimate in the data (1:3%).We 
ompare this value to Barro and Ursua (2008b)'estimates. These authors use long samplesof 
onsumption series for a large set of 
ountries.29 Their �ndings are broadly 
onsistent withthe estimates from Barro (2006), whi
h are based on GDP disasters. Barro and Ursua (2008b)estimate a probability of disasters p equal to 3:63%. A 
oeÆ
ient of relative risk aversion 
 = 3:5then implies E[B�
℄ = 3:88, leading to a value of pE[B�
 ℄ equal to 14%. They show that thesevalues 
an rationalize the equity premium.Using a value of 14% for pE[B�
 ℄ and a value of 20% for F 1 � F 3 leads to a disaster riskpremium of 0:14� 0:2 = 2:8%, whi
h is higher but still 
omparable to our point estimate of 1:3%.Therefore, we view our estimates as broadly 
onsistent with Barro and Ursua (2008b)'s �ndings.We end this paper with a review of the link between volatility smiles, risk reversals and ex
hangerates.29Note, however, that interpreting our pri
ing kernel stri
tly as a simple fun
tion of 
onsumption growth would opena large debate that is beyond the s
ope of this paper. Constant relative risk aversion and 
omplete markets imply, forexample, a very high 
orrelation between 
onsumption growth and ex
hange rates, whi
h is not in the data (Ba
kusand Smith, 1993). 32



3.6 Volatility Smiles, Risk Reversals and Ex
hange RatesWe �rst provide a simple 
alibration of the model that simultaneously a

ounts for the volatilitysmile observed in the data and the disaster risk premium that we have estimated. We then test the
ontemporaneous relationship between risk reversals and ex
hange rates, and the predi
tive 
ontentof risk reversals for 
urren
ies.A

ounting for the smile In this se
tion, we examine the impli
ations of our model for thevolatility smile, that is, the relationship between the implied volatility and the strike of 
urren
yoptions. The exa
t value of a put with strike K is given by:Pt;t+� (K) = (1� p�) e�g��V PBS (1; Ke�(g�g�)� ; �p�)+ p�e�g��E [J�V PBS (1; Ke�(g�g�)�J=J�; �t;t+�p�)] ;where �t;t+� = √var ("� "�) and the expe
tation operator E is over the joint distribution of Jand J�:The implied volatility �̂t;t+� is 
omputed by solving the following impli
it equation:Pt;t+� (K) = e�r ��V PBS (1; Ke�(r�r �)� ; �̂t;t+�p�) ;where r = g � log (1 + p�E [J � 1℄) =� and r � = g� � log (1 + p�E [J� � 1℄) =� . Re
all that whenquoting options, traders routinely use the delta of the underlying option rather than its strike, whi
his a 
onventional quantity 
omputed as follows:�e�r ��N( log (K)� (r � r � + �̂2t;t+�=2) ��̂t;t+�p� ) :Note that this quantity might di�er from the true sensitivity of the option with respe
t to thefundamental.All our 
urren
y options are options on ex
hange rates vis a vis the US dollar. It is thereforemost natural to attempt to 
alibrate our model to �t the average volatility smile of a given portfolio.We 
hoose to fo
us on portfolio 3: it represents a 
arry trade where the funding 
urren
y is theUS dollar. To 
alibrate the model, we 
hoose the parameters as follows. We take J and J� to bedeterministi
. We assume that the values of p and J for the US are 
onsistent with the estimationof Barro and Ursua: J = B�
 = 3:88 and p = 3:63%: We 
hoose J� to mat
h our estimate of�D = 1:6%: It implies that J� = J (1� �D= (pB�
)). We 
hoose the physi
al volatility of theex
hange rate to mat
h an implied volatility at the money in portfolio 3 of 10%. This leads us to33



pi
k �t;t+� = 9:6%. We pi
k g = 13:4 and g� = 14:6%, in order to mat
h the average US interestrate r = 3% and the average interest rate in portfolio 3, r � = 5:8%: over the sample.The resulting implied volatilities as a fun
tion of the \delta" of the option in this 
alibrationare as follows. For a 10-delta put, the implied volatility is 11:4%. For a 25-delta put, the impliedvolatility is 10:4%. At the money, the implied volatility is 10:0%. For a 25-delta 
all, the impliedvolatility is 9:9%. Finally, for a 10-delta 
all, the implied volatility is 9:8%.This is to be 
ompared to the implied volatilities for portfolio 3 in the data. For a 10-delta put,the implied volatility is 11:5%. For a 25-delta put, the implied volatility is 10:6%. At the money,the implied volatility is 10:0%. For a 25-delta 
all, the implied volatility is 10:02%. Finally, for a10-delta 
all, the implied volatility is 10:39%. The overall �t of our model is quite good. It is betterfor out of the money puts than for out of the money 
alls. Yet, note that we obtain these valuesby assuming 
onstant J and J?. The �t 
ould be further improved by 
hoosing an appropriateprobability distribution for J and J�.Risk reversals and ex
hange rates The model implies that (i) in
reases in risk reversals areasso
iated with 
ontemporaneous ex
hange rate depre
iations, (ii) high levels of risk-reversal predi
tfuture 
urren
y returns. We test these predi
tions both on panel data and on portfolio series.In order to test for the �rst predi
tion, we �rst regress monthly 
hanges in bilateral nominalex
hange rates on monthly 
hanges in risk reversals. We use risk reversals measured in pri
es at 10and 25 deltas. Be
ause these deltas imply di�erent deviations from forward rates a
ross 
ountries,we also 
he
k our �ndings on risk reversals that are normalized: these risk reversals 
orrespond tostrikes whi
h are 5 or 10 per
ent away from forward rates. We demean both the regressor and thedependant variable so as to remove the 
entral role played by the US dollar. All panel spe
i�
ationsin
lude 
urren
y �xed e�e
ts, and standard errors are obtained by bootstrap. The results onportfolios are reported in Table 7. Tables 18 and 19 in Appendix C report panel results for advan
ede
onomies and the whole sample, respe
tively. We �nd a highly robust negative 
orrelation between
hanges in risk reversals and 
hanges in ex
hange rates. This negative relationship is robust toalternative risk-reversal measures and to 
ontrolling for the e�e
t of the dollar.30 Within portfolios,R2s range from 30% to 45%. In our panel estimates using demeaned 
ountry-level ex
hange rates,R2s are 
lose to 5%. In both 
ases, risk reversals are statisti
ally signi�
ant. Their e�e
t is alsoe
onomi
ally signi�
ant: a one standard deviation 
hange in risk reversals is asso
iated with a 1% to2:3% variation in ex
hange rates, whi
h is slightly below the monthly standard deviation of nominalex
hange rate 
hanges (2:8%).30Carr and Wu (2007) also report high 
ontemporaneous 
orrelation between 
urren
y ex
ess returns and risk reversalsfor the Yen and British Pound vis-a-vis the US dollar. 34



In order to test for the se
ond predi
tion, we augment standard UIP regressions with riskreversals. Equivalent regressions start o� ex
ess returns instead of 
hanges on ex
hange rates.The null hypothesis of UIP not being reje
ted is a 
oeÆ
ient of 1 for the interest di�erential -de�ned as the di�eren
e between domesti
 and foreign interest rate - in the spe
i�
ation withex
hange rate 
hange and a 
oeÆ
ient of zero in the spe
i�
ation with ex
ess returns. Adding riskreversals to the usual UIP regressions does not improve ex
hange rate one-month-ahead fore
asts,and no risk reversal signi�
antly predi
ts 
urren
y ex
ess returns or 
hanges in nominal ex
hangerates in panel data. To save spa
e, we report the results in Tables 20 and 21 in Appendix C.Curren
y portfolios o�er a slightly di�erent view on risk reversals. They suggest a 
lear positiverelationship between average 
urren
y ex
ess returns and average risk reversals over the sampleperiod. As previously noted, the last panel of Table 2 reports an in
rease in average risk reversalsfrom the �rst portfolio (-0.46 basis point) to the last portfolio (3.95 basis points). Equivalent resultsare obtained for other measures of risk reversals and for the whole sample of advan
ed and emerging
ountries (
f Table 15). However, within portfolios, there is no one-month ahead predi
tability ofrisk reversals on 
urren
y ex
ess returns as shown in Table 8.Overall, we �nd strong eviden
e in favor of a 
ontemporaneous link between ex
hange rates andrisk reversals, but more limited eviden
e of ex
hange rate predi
tability.4 Con
lusionThe obje
tive of this paper is to provide a simple model-based estimation of the share of 
arrytrade returns that 
an be attributed to disaster risk. Our main empiri
al result shows that disasterpremia explain one-fourth of 
arry trade returns. This result suggests that the introdu
tion of atime-varying disaster risk in ex
hange rate models, as in Farhi and Gabaix (2008), is empiri
allyrelevant.While we �nd that disaster risk plays a signi�
ant role in explaining 
urren
y returns, we fall shortof fully solving the 
arry trade puzzle though disasters. In fa
t, our �ndings suggest that a typi
alinvestor 
an still obtain signi�
ant 
arry trade returns while being hedged against large 
urren
y
rashes. Several interpretations of these hedged ex
ess returns are possible. First, the investornaturally expe
ts a 
ompensation for the remaining Gaussian, non-disaster risk. High interest rate
urren
ies tend to depre
iate and low interest rate 
urren
ies tend to appre
iate in bad times.Se
ond, out-of-the money options might be relatively 
heap in our sample. These options are notdefault-free, and 
ounterparty risk might push their pri
es downward.
35
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Table 1: Ex
ess Returns: Advan
ed Countries Sorted on Interest RatesPortfolios 1 2 3 1 2 3Going Long Going ShortPanel I: UnhedgedMean �1:37 1:45 5:13 1:37 �1:45 �5:13[2:08℄ [2:25℄ [2:08℄ [2:02℄ [2:14℄ [1:99℄Sharpe Ratio �0:19 0:19 0:71 0:19 �0:19 �0:71Panel II: Hedged at 10-deltaMean �2:30 0:65 4:06 0:74 �1:58 �5:33[1:93℄ [1:99℄ [1:90℄ [1:86℄ [1:94℄ [1:87℄Sharpe Ratio �0:33 0:09 0:60 0:11 �0:23 �0:81Panel III: Hedged at 25-deltaMean �2:14 0:59 3:03 0:62 �1:21 �4:68[1:72℄ [1:82℄ [1:66℄ [1:48℄ [1:59℄ [1:53℄Sharpe Ratio �0:36 0:09 0:51 0:12 �0:21 �0:86Panel IV: Hedged ATMMean �1:33 0:61 1:68 0:02 �0:86 �3:47[1:27℄ [1:40℄ [1:26℄ [1:07℄ [1:13℄ [1:10℄Sharpe Ratio �0:31 0:13 0:39 0:00 �0:21 �0:91Notes: This table reports average 
urren
y ex
ess returns that are unhedged, hedged at 10-delta, at 25-delta andat-the-money for our four portfolios. In the left se
tion, we assume that the US investor goes long the foreign 
urren
y.In the right se
tion, we assume that the US investor goes short the foreign 
urren
y. In ea
h 
ase, we report the meanex
ess return, its standard error and the 
orresponding Sharpe ratio. The mean and standard deviations are annualized(multiplied respe
tively by 12 and p12). The Sharpe ratio 
orresponds to the ratio of the annualized mean to theannualized standard deviation. Standard errors are obtained by bootstrapping the monthly ex
ess returns under theassumptions that they are i.i.d. Portfolio 1 
ontains 
urren
ies with the lowest interest rates. Portfolio 3 
ontains
urren
ies with the highest interest rates. The horizon of the ex
ess returns and the option maturity are one month.Data are monthly, from JP Morgan. The sample period is 1/1996 - 8/2008.
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Table 2: Implied Volatilities and Risk Reversals: Advan
ed Countries Sorted on Interest RatesPortfolios 1 2 3Panel I: Implied Volatilities10Æ�Put 9:78 10:09 11:50[0:14℄ [0:17℄ [0:20℄25Æ�Put 9:38 9:56 10:60[0:15℄ [0:16℄ [0:17℄ATM 9:33 9:31 10:02[0:14℄ [0:16℄ [0:17℄25Æ-Call 9:78 9:55 10:02[0:15℄ [0:16℄ [0:15℄10Æ-Call 10:51 10:05 10:39[0:16℄ [0:17℄ [0:16℄Panel II: Risk Reversals (Implied Volatilities)Mean RR10 �0:73 0:05 1:12[0:06℄ [0:05℄ [0:06℄Mean RR25 �0:40 0:01 0:58[0:03℄ [0:03℄ [0:03℄Notes: This table reports average implied volatilities and risk reversals by portfolios. The �rst panel reports averageimplied volatilities on put and 
all 
ontra
ts for strike pri
es 10-, 25-delta and at-the-money. The last two panelsreports risk reversals at 10- and 25-deltas. The se
ond panel 
orresponds to di�eren
es in implied volatilities. Theyare quoted in annual per
entages. Standard errors are obtained by bootstrapping the monthly ex
ess returns underthe assumptions that they are i.i.d. Portfolio 1 
ontains 
urren
ies with the lowest interest rates. Portfolio 3 
ontains
urren
ies with the highest interest rates. The horizon of the ex
ess returns and the option maturity are one month.Data are monthly, from JP Morgan. The sample period is 1/1996 - 8/2008.
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Table 3: Ex
ess Returns: Advan
ed Countries Sorted on Risk ReversalsPortfolios 1 2 3 1 2 3Going Long Going ShortPanel I: UnhedgedMean 0:48 1:22 3:70 �0:48 �1:22 �3:70[2:10℄ [2:11℄ [1:95℄ [2:06℄ [2:05℄ [1:87℄Sharpe Ratio 0:06 0:16 0:54 �0:06 �0:16 �0:54Panel II: Hedged at 10-deltaMean �0:38 0:47 2:57 �1:00 �1:39 �3:96[2:02℄ [2:05℄ [1:83℄ [1:98℄ [1:90℄ [1:76℄Sharpe Ratio �0:05 0:07 0:39 �0:14 �0:20 �0:62Panel III: Hedged at 25-deltaMean �0:21 0:05 1:83 �0:68 �1:29 �3:45[1:68℄ [1:70℄ [1:51℄ [1:66℄ [1:61℄ [1:45℄Sharpe Ratio �0:03 0:01 0:33 �0:12 �0:23 �0:65Panel IV: Hedged ATMMean �0:03 �0:09 1:17 �0:53 �1:33 �2:55[1:28℄ [1:31℄ [1:10℄ [1:12℄ [1:16℄ [1:06℄Sharpe Ratio �0:01 �0:02 0:29 �0:13 �0:32 �0:69Notes: This table reports average 
urren
y ex
ess returns that are unhedged, hedged at 10-delta, at 25-delta andat-the-money for our four portfolios. In the left se
tion, we assume that the US investor goes long the foreign 
urren
y.In the right se
tion, we assume that the US investor goes short the foreign 
urren
y. In ea
h 
ase, we report the meanex
ess return, its standard error and the 
orresponding Sharpe ratio. The mean and standard deviations are annualized(multiplied respe
tively by 12 and p12). The Sharpe ratio 
orresponds to the ratio of the annualized mean to theannualized standard deviation. Standard errors are obtained by bootstrapping the monthly ex
ess returns under theassumptions that they are i.i.d. Portfolio 1 
ontains 
urren
ies with the lowest risk reversals at 10-delta. Portfolio3 
ontains 
urren
ies with the highest risk reversals at 10-delta. The horizon of the ex
ess returns and the optionmaturity are one month. Data are monthly, from JP Morgan. The sample period is 1/1996 - 8/2008.
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Table 4: Disaster Risk Premia - Advan
ed Countries Sorted on Interest RatesPanel I: Carry Ex
ess ReturnsUnhedged Carry Hedged at 10 Æ Hedged at 25 Æ Hedged ATMMean 6:50 4:80 3:65 1:70[1:88℄ [1:59℄ [1:41℄ [1:12℄Mean Spread 1:70 2:85 4:80[0:41℄ [0:85℄ [1:32℄Panel II: Estimations10Æ 25Æ ATM 10Æ; 25Æ, GMMand ATM 2nd Stage�D 1:16 1:63 3:10 1:96 1:01[0:41℄ [0:87℄ [1:68℄ [0:93℄ [0:36℄�G 5:33 4:87 3:40 4:53 4:77[1:79℄ [1:87℄ [2:21℄ [1:87℄ [1:92℄�D � �G �4:17 �3:23 �0:30 �2:57 �3:76[1:90℄ [2:31℄ [3:51℄ [2:35℄ [2:02℄Notes: This �rst panel of this table reports average returns on hedged and unhedged 
urren
y 
arry trades and theirstandard errors. We use the 
urren
y portfolios presented in Table 1. Carry trades 
orrespond to returns on the lastminus returns on the �rst portfolio. We 
onsider di�erent hedges: 10-delta, 25-delta and at-the-money. We also reportthe average di�eren
e between unhedged and hedged 
arry trades. The se
ond panel reports stru
tural estimates. �Ddenotes the part of the 
arry ex
ess return linked to disaster risk. �G 
orresponds to the Gaussian, non-disaster part ofthe same ex
ess return. These estimates are obtained using hedged returns at 10-delta (�rst 
olumn), 25-delta (se
ond
olumn), at-the-money (third 
olumn) or 10-, 25-delta and at-the-money (fourth and �fth 
olumns). Standard errorsare obtained by bootstrapping the monthly ex
ess returns under the assumptions that they are i.i.d. Data are monthly,from JP Morgan. The sample period is 1/1996 - 8/2008.
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Table 5: Disaster Risk Premia - Advan
ed Countries - Sorted on Risk ReversalsPanel I: Carry Ex
ess ReturnsUnhedged Carry Hedged at 10 Æ Hedged at 25 Æ Hedged ATMMean 3:22 1:57 1:15 0:64[1:66℄ [1:53℄ [1:29℄ [1:14℄Mean Spread 1:65 2:07 2:58[0:36℄ [0:80℄ [1:32℄Panel II: Estimations10Æ 25Æ ATM 10Æ; 25Æ, GMMand ATM 2nd Stage�D 1:48 1:68 1:94 1:70 1:41[0:36℄ [0:87℄ [1:72℄ [0:94℄ [0:32℄�G 1:74 1:54 1:28 1:52 1:67[1:67℄ [1:74℄ [2:11℄ [1:74℄ [1:78℄�D � �G �0:26 0:14 0:66 0:18 �0:27[1:79℄ [2:22℄ [3:49℄ [2:28℄ [1:90℄Notes: This �rst panel of this table reports average returns on hedged and unhedged 
urren
y 
arry trades and theirstandard errors. We use the 
urren
y portfolios presented in Table 3. Carry trades 
orrespond to returns on the lastminus returns on the �rst portfolio. We 
onsider di�erent hedges: 10-delta, 25-delta and at-the-money. We also reportthe average di�eren
e between unhedged and hedged 
arry trades. The se
ond panel reports stru
tural estimates. �Ddenotes the part of the 
arry ex
ess return linked to disaster risk. �G 
orresponds to the Gaussian, non-disaster part ofthe same ex
ess return. These estimates are obtained using hedged returns at 10-delta (�rst 
olumn), 25-delta (se
ond
olumn), at-the-money (third 
olumn) or 10-, 25-delta and at-the-money (fourth and �fth 
olumns). Standard errorsare obtained by bootstrapping the monthly ex
ess returns under the assumptions that they are i.i.d. Data are monthly,from JP Morgan. The sample period is 1/1996 - 8/2008.
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Table 6: Disaster Risk Premia - Advan
ed Countries Sorted on Interest Rates - With Transa
tionCosts Panel I: Carry Ex
ess ReturnsUnhedged Carry Hedged at 10 Æ Hedged at 25 Æ Hedged ATMMean 6:50 4:46 3:08 1:03[1:76℄ [1:65℄ [1:37℄ [1:13℄Mean Spread 2:04 3:42 5:47[0:41℄ [0:82℄ [1:28℄Panel II: Estimations10Æ 25Æ ATM 10Æ; 25Æ, GMMand ATM 2nd Stage�D 1:54 2:39 4:44 2:79 1.27[0:40℄ [0:87℄ [1:71℄ [0:94℄ [0.38℄�G 4:95 4:11 2:06 3:71 4.36[1:80℄ [1:87℄ [2:25℄ [1:88℄ [1.96℄�D � �G �3:41 �1:72 2:39 �0:91 -3.09[1:89℄ [2:29℄ [3:57℄ [2:36℄ [2.04℄Notes: This �rst panel of this table reports average returns on hedged and unhedged 
urren
y 
arry trades and theirstandard errors. We use the 
urren
y portfolios presented in Table 1. Carry trades 
orrespond to returns on the lastminus returns on the �rst portfolio. We 
onsider di�erent hedges: 10-delta, 25-delta and at the money. We also reportthe average di�eren
e between unhedged and hedged 
arry trades. The se
ond panel reports stru
tural estimates. �Ddenotes the part of the 
arry ex
ess return linked to disaster risk. �G 
orresponds to the Gaussian, non-disaster part ofthe same ex
ess return. These estimates are obtained using hedged returns at 10-delta (�rst 
olumn), 25-delta (se
ond
olumn), at-the-money (third 
olumn) or 10-, 25-delta and at-the-money (fourth and �fth 
olumns). Standard errorsare obtained by bootstrapping the monthly ex
ess returns under the assumptions that they are i.i.d. Data are monthly,from JP Morgan. The sample period is 1/1996 - 8/2008. We assume annual transa
tion 
osts of 0:25% on unhedgedreturns and bid-ask spreads of 5% on implied volatilities.
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Table 7: Changes in Risk Reversals and Ex
hange Rates: Contemporaneous Spe
i�
ations withinPortfoliosDependant Variable: Ex
hange RatesPanel I: Raw Variables Panel II: Demeaned VariablesPortfolios P1 P2 P3 P1 P2 P3Risk Reversals -126.63 -131.82 -105.18 -119.95 -132.09 -145.43Strike: Delta 10 [12.93℄*** [24.22℄*** [28.46℄*** [27.30℄*** [18.09℄*** [17.87℄***Observations 155 155 155 155 155 155R2 0.4 0.28 0.41 0.37 0.42 0.35Risk Reversals -77.56 -62.66 -49.29 -54.95 -62 -74.57Strike: Delta 25 [8.46℄*** [18.28℄*** [16.76℄*** [19.08℄*** [17.25℄*** [14.26℄***Observations 155 155 155 155 155 155R2 0.38 0.25 0.36 0.32 0.36 0.31Risk Reversals -61.64 -39.38 -30.31 -96.83 -45.76 -69.08Strike: Forward +/- 10% [14.66℄*** [36.52℄ [13.61℄** [60.45℄ [12.88℄*** [30.00℄**Observations 96 125 133 96 125 133R2 0.22 0.14 0.28 0.05 0.25 0.16Risk Reversals -40.08 -48.97 -46.8 -50.99 -52.8 -47.9Strike: Forward +/- 5% [4.69℄*** [6.05℄*** [7.66℄*** [7.51℄*** [5.08℄*** [6.80℄***Observations 147 155 144 147 155 144R2 0.39 0.3 0.46 0.42 0.44 0.32Notes: This table do
uments 
ontemporaneous relationships between 
hanges in nominal ex
hange rates and 
hangesin risk reversals. Constant terms are in
luded but not reported. Panel I presents results based on raw variables. PanelII uses 
ross-se
tionally demeaned variables to 
ontrol for the spe
i�
 role of the US Dollar. Changes in ex
hangerates 
orrespond to monthly log 
hanges. Changes in risk reversals 
orrespond to �rst di�eren
es. Ea
h horizontalpanel presents the results of regressions in
luding a di�erent risk-reversal measure. Standard errors obtained frombootstrap pro
edures using 1000 repli
ations are presented below the point estimates. The symbols ***, ** and *indi
ate statisti
al signi�
an
e at 1, 5 and 10 per
ent 
on�den
e levels. The sample 
omprises 
urren
ies from advan
ed
ountries ex
luding observations with non 
oating ex
hange rate a

ording to the IMF De Fa
to Classi�
ation. Dataare monthly, from JP Morgan. The sample period is 02/1996 -08/2008.
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Table 8: Risk Reversals, Ex
hange Rate Changes and Curren
y Ex
ess Returns: Predi
tive Spe
i-�
ations within PortfoliosDependant Variable: Panel I: Ex
hange Rates Panel II: Curren
y Ex
ess ReturnsPortfolios P1 P2 P3 P1 P2 P3Interest Rate Di�erentials -1.27 -4.16 -0.97 -2.27 -5.17 -1.97[1.52℄ [1.77℄** [1.08℄ [1.49℄ [1.74℄*** [1.06℄*Risk Reversals: (+/- 10%) 13.1 -1.12 -3.7 13.11 -1.14 -3.72[13.36℄ [37.33℄ [19.30℄ [14.94℄ [40.95℄ [19.38℄Observations 109 129 138 109 129 138R2 0.02 0.04 0.01 0.04 0.06 0.03Interest Rate Di�erentials -2.78 -3.49 -0.96 -3.78 -4.5 -1.97[1.28℄** [1.72℄** [1.15℄ [1.27℄*** [1.79℄** [1.16℄*Risk Reversals: (+/-5 %) 0.81 -2.37 -3.44 0.81 -2.39 -3.47[5.52℄ [9.54℄ [7.53℄ [5.55℄ [9.69℄ [7.26℄Observations 109 129 138 109 129 138R2 0.03 0.04 0.01 0.05 0.06 0.02Interest Rate Di�erentials -2.5 - 3.48 -0.7 -3.5 -4.49 -1.71[1.21℄** [1.71℄** [1.02℄ [1.22℄*** [1.65℄*** [1.06℄Risk Reversals: Delta 10 4.18 -8.18 -7.39 4.17 -8.23 -7.44[16.66℄ [25.22℄ [18.81℄ [17.10℄ [26.06℄ [18.55℄Observations 155 155 155 155 155 155R2 0.02 0.04 0.01 0.05 0.06 0.02Interest Rate Di�erentials -2.51 -3.49 -0.76 -3.52 -4.5 -1.76[1.26℄** [1.69℄** [1.07℄ [1.23℄*** [1.68℄*** [1.12℄Risk Reversals: Delta 25 0.39 -5.32 -5.06 0.38 -5.35 -5.09[9.31℄ [13.27℄ [10.02℄ [9.41℄ [14.19℄ [10.90℄Observations 155 155 155 155 155 155R2 0.02 0.04 0.01 0.05 0.06 0.02Notes: This table presents results of predi
tability tests. We regress monthly 
hanges in nominal ex
hange rates (panelI) or monthly 
urren
y ex
ess returns (panel II) on risk reversals and interest di�erentials. The interest di�erential isde�ned as the di�eren
e between the domesti
 and the foreign interest rate. The null hypothesis of UIP not beingreje
ted is a 
oeÆ
ient of 1 for the interest rate di�erential in panel I and a 
oeÆ
ient of zero in panel II. Constantterms are in
luded but not reported. Standard errors obtained from a bootstrap pro
edure using 1000 repli
ationsare presented below their respe
tive point estimates. ***,**,* indi
ates statisti
al signi�
an
e at 1, 5, 10 per
ent
on�den
e levels. The sample 
omprises 
urren
ies from advan
ed 
ountries ex
luding observations with non 
oatingex
hange rate a

ording to the IMF De Fa
to Classi�
ation. Data are monthly, from JP Morgan. The sample periodis 01/1996 -08/2008. 47
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K*Figure 1: Option Payo�sThis �gure presents the payo�s of di�erent option investments as a fun
tion of the underlying asset pri
es and strikes.We 
onsider the payo� of buying a 
all (with strike K?) or buying a put option (with strike K). Finally, we 
onsider arisk reversal that 
orresponds to selling a 
all (with strike K?) and simultaneously buying a put (with strike K).
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Figure 2: DeltasThis �gure presents the deltas of put options as a fun
tion of their pri
es. The delta of an option is de�ned as the rateof 
hange of the option pri
e with respe
t to the pri
e of the underlying asset. The delta of a put varies between �1for extremely in the money options to 0 for extremely out of the money options.48
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StrikeFigure 3: Implied distributions and implied volatility smilesThis �gure relates implied distributions to implied volatility smiles. The left panel presents two theoreti
al distributions.They do not 
orrespond to our data and are used here only as examples. The �rst one (in bla
k) 
orresponds to aGaussian distribution. The se
ond one (in red) has the same mean and standard deviation as the Gaussian distributionbut exhibits a left, fat tail. The probability of an ex
hange rate depre
iation is here larger than in a Gaussian distribution.This se
ond distribution 
an be thought of as the sum of a Gaussian distribution and some large but rare disasters(represented here in a bla
k re
tangle). Note that buying an option with strike � (blue verti
al line) o�ers prote
tionagainst these disasters, but also against all the negative ex
hange rate 
hanges implied by the Gaussian distributionto the left of the blue line. The right panel presents two implied volatility 
urves as fun
tion of strikes. The impliedvolatility is de�ned as the volatility ne
essary to mat
h the observed option pri
e using a standard Bla
k-S
holes formula.If the distribution of the underlying ex
hange rate is Gaussian, the implied volatility is unique; it does not vary with theoption strike. It 
orresponds to the bla
k line. If the underlying distribution has a left fat tail, for example, the impliedvolatility varies with the option strike (red 
urve); in this 
ase, the implied volatility for low strikes is higher than for aGaussian distribution.
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Figure 4: One-Month Option-Implied Volatility Smiles - August 2008.This �gure plots, for ea
h 
urren
y in our sample, implied volatilities for di�erent strike pri
es. Implied volatilities arein per
entages. Strike pri
es are s
aled by spot rates.
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Figure 5: New Zealand Dollar and Japanese YenThis �gure plots monthly 
hanges in ex
hange rates for the New Zealand Dollar and Japanese Yen and the return indexon a 
arry trade strategy that borrows in Yen to invest in New Zealand Dollar. The sample period is 7/2007 - 12/2008.
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Figure 6: Options Exer
isedThis �gure plots the frequen
y of 
all and put options exer
ised respe
tively in the �rst and last portfolios. At ea
hpoint in time, the frequen
y is obtained as the number of options exer
ised divided by the number of 
urren
ies in theportfolio at that time. We 
onsider only options at 10-delta. The sample period is 2/1996 - 12/2008.
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Figure 7: Curren
y Carry Trades and Equity Returns.This �gure plots monthly 
urren
y 
arry trades and US equity returns. Carry ex
ess returns (blue bars) 
orrespond toour sample of advan
ed 
ountries. Data are monthly, from JP Morgan (IMF). Equity returns (red line) 
orrespond tothe US MSCI index. The sample period is 2/1996 - 12/2008.
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Figure 8: Carry Returns and Risk MeasuresThis �gure plots 
arry ex
ess returns and di�erent risk measures. The upper panel uses the equity option-impliedvolatility index VIX; below are the bond option-implied volatility MOVE index and the 
redit spread (measured as theyield spreads between BAA and 10-year US Treasury bonds). Curren
y returns (blue bars) and risk measures (red lines)are all demeaned and divided by their standard deviations. The sample period is 2/1996 - 12/2008.
54



1996 1998 2000 2002 2004 2006 2008 2010
−5

−4

−3

−2

−1

0

1

2

3

4

5
Currency Excess Returns and Quarterly Consumption Growth

Corr. = 0.37

Figure 9: Carry Returns and Consumption GrowthThis �gure presents quarterly 
arry ex
ess returns and real 
onsumption growth per 
apita. Curren
y returns (bluebars) and 
onsumption growth (red line) are all demeaned and divided by their standard deviations. The sample periodis 2/1996 - 12/2008.
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Figure 10: Risk Reversals and Changes in Ex
hange Rates - Fall 2008This �gure plots risk reversals at 10-delta and subsequent one-month 
hanges in ex
hange rates for ea
h month of fall2008. Risk reversal pri
es are in basis points. Changes in ex
hange rates are in per
entages. In
reases in ex
hangerates 
orrespond to depre
iations of the US dollar. Ex
hange rate 
hanges between date t and t + 1 are dated t + 1.The sample period fo
uses on advan
ed 
ountries and 
overs the period from 9/2008 to 12/2008.
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Crash Risk in Curren
y Markets- Supplementary Appendix -
5 Appendix A: Derivations5.1 Some Useful LemmasWe start with a well-known Lemma, whose proof we provide for 
ompleteness.Lemma 3. (Dis
rete-time Girsanov's lemma) Suppose that (x; y) are jointly Gaussian distributed random vari-ables under probability measure P . Consider the measure Q su
h that dQ=dP = exp (x � E [x ℄� var (x) =2).Then, under Q, y is Gaussian, with distributiony �Q N (E [y ℄ + 
ov (x; y) ; var (y)) ; (11)where E [y ℄ ; 
ov (x; y) ; var (y) are 
al
ulated under P .Proof. We 
al
ulate that the 
hara
teristi
 fun
tion of y . For a purely imaginary number k, EQ [eky ] isgiven byE [ex�E[x℄��2x=2eky ] = exp(kE [y ℄ + k2�2y2 + k
ov (x; y)) = exp(k (E [y ℄ + 
ov (x; y)) + k2�2y2 ) :That is indeed the 
hara
teristi
 fun
tion of distribution (11).Lemma 4. For lnX, ln Y jointly Gaussian distributed,E [(X � Y )+] = V CBS (E [X℄ ; E [Y ℄ ; var (lnX � ln Y )1=2)= V PBS (E [Y ℄ ; E [X℄ ; var (lnX � ln Y )1=2) ;where the 
onvention is V CBS (S0; K; �) and V PBS (S0; K; �) are the Bla
k-S
holes 
all and put pri
es withinterest rate 0 and horizon 1.Proof. Observe that our Bla
k-S
holes fun
tions are:V PBS(S;K; �) = E [(K � Se�u��2=2)+] ; V CBS(S;K; �) = E [(Se�u��2=2 �K)+] ;where u is a normal with mean 0 and varian
e 1. 57



Write X = E [X℄ ex�var(x)=2 and Y = E [Y ℄ ey�var(y)=2, where (x; y) are jointly Gaussian distributed withmean 0 and respe
tive varian
e var (lnX) and var (ln Y ). Use Lemma 3, 
alling P the underlying probabilitymeasure, and de�ning measure dQ=dP = exp (x � E [x ℄� Var (x) =2),E [(X � Y )+] = E [(E [X℄ ex�var(x)=2 � E [Y ℄ ey�var(y)=2)+]= E [ex�var(x)=2 (E [X℄� E [Y ℄ ez)+]= EQ [(E [X℄� E [Y ℄ ez)+] ;with z = y � var (y) =2� x + var (x) =2. Applying Lemma 3, z �Q N (EQ [z ℄ ; var (y � x)), with:EQ [z ℄ = � var (y) =2 + var (x) =2 + 
ov (x; y � x)= � var (y � x) =2;and z �Q N (� var (y � x) =2; var (y � x)) :So E [(X � Y )+] = V PBS (E [Y ℄ ; E [X℄ ; var (lnX � ln Y )1=2) :The same reasoning shows that E [(X � Y )+] = V CBS (E [X℄ ; E [Y ℄ ; var (lnX � ln Y )1=2).Lemma 5. For lnX, ln Y; lnZ jointly Gaussian distributed,
ov (Z; (X � Y )+) = V CBS (E [ZX℄ ; E [ZY ℄ ; var (lnX � ln Y )1=2)� E [Z℄ V CBS (E [X℄ ; E [Y ℄ ; var (lnX � ln Y )1=2)= V PBS (E [ZY ℄ ; E [ZX℄ ; var (lnX � ln Y )1=2)� E [Z℄ V PBS (E [Y ℄ ; E [X℄ ; var (lnX � ln Y )1=2) :Proof. It 
omes dire
tly from the previous Lemma.5.2 Proofs5.2.1 Proof of Proposition 1Call H = pE [J � 1℄. We have: e�r� = E[Mt;t+� ℄ = e�g�(1 +H�):Taking logs, �r� = �g� + ln(1 +H�) = �g� +H� + o (�) ;58



so r = g �H + o (1).5.2.2 Proof of Proposition 2Unhedged Returns The trade has return X in domesti
 
urren
y, and does not require any invest-ment, so E [Mt;t+�Xt;t+� ℄ = 0. Hen
e:0 = (1� p�)END [Mt;t+�Xt;t+� ℄ + p�ED [Mt;t+�Xt;t+� ℄= (1� p�) (END [Mt;t+� ℄END [Xt;t+� ℄ + 
ovND (Mt;t+� ; Xt;t+�))+ p�ED [Mt;t+�Xt;t+� ℄ :Hen
e END [Xt;t+� ℄ = �p�ED [Mt;t+�Xt;t+� ℄� (1� p�)
ovND (Mt;t+� ; Xt;t+�)(1� p�)END [Mt;t+� ℄ :Note that END [Mt;t+� ℄ = 1 + o (1) ;
ovND (Mt;t+� ; Xt;t+�) = 
ovND("; "? � ")� + o (�) ;and ED [Mt;t+�Xt;t+� ℄ = E [(J? � J)℄ + o (1) :Therefore, END [Xt;t+� ℄ =� = pE [J � J?℄� 
ov("; "? � ") + o(1):Hedged returns By the same reasoning as above, and using �Pt;t+� = 1 + o (1), �Ct;t+� = 1+ o (1),END [Xt;t+� (K)℄ = p�E [J � J?℄� p�E [(KJ � J?)+]� 
ovND [Mt;t+� ;(K � St+�St )+]� 
ovND [Mt;t+� ; St+�St ] :We see that 
ovND [Mt;t+� ; St+�St ] = 
ov ("p�; ("? � ")p�)+ o (�)= 
ov ("; "? � ") � + o (�) :Call Z = Mt;t+� , X = K, Y = St+�=St , so thatE [Z℄ = e�g� , E [Y ℄ = e(�g?+g�
ov(";"?�"))� , E [ZY ℄ = e�g?� :59



We use Lemma 5. We have:
ovND [M;(e�p� � St+�St )+] = V PBS (eg?� ; e�p�eg� ; var ("? � ")1=2p�)� V PBS (eg?�+
ov(";"?�")� ; e�p�eg� ; var ("? � ")1=2p�)= �PBS(�) 
ov ("; "? � ") � + o(�):We 
on
lude:lim�!0END [X (e�p�)] =� = pE [J � J?℄� pE [(KJ � J?)+]� 
ov ("; "? � ") (1 + �PBS(�)) :
5.2.3 Proof of Lemma 1It follows dire
tly from the 
al
ulations done in the proof of Proposition 3. The disaster risk premium isproportional to p� , while the disaster risk premium is proportional to p� . So in the limit of small times, theoption pri
e is equal to its no-disaster 
omponent up to smaller O(�) terms.
5.2.4 Proof of Lemma 2We have E [Mt;t+� ℄ = e�r� and E [M?t;t+�] = e�r ?� :Also, de�ne � = var ("? � ")1=2. So, the 
all pri
e is:C(K) = E [Mt;t+� (St+�St �K)+] = E [(M?t;t+� �KMt;t+�)+]= V CBS(E [M?t;t+�] ; E [KMt;t+� ℄ ; �p�) by Lemma 4= V CBS(e�r ?� ; Ke�r� ; �p�).The pri
e of a put with strike K̃ is:P (K̃) = E [Mt;t+� (K̃ � St+�St )+] = E [(K̃Mt;t+� �M?t;t+�)+]= V CBS(K̃E [Mt;t+� ℄ ; E [M?t;t+�] ; �p�) by Lemma 4= V CBS(K̃e�r� ; e�r ?� ; �p�).60



so, when K̃ = K�1e2(r�r ?)� , P (K̃) = V CBS(K�1e2(r�r ?)�e�r� ; e�r ?� ; �p�)=(a) K�1e(r�r ?)�V CBS(e�r ?� ; Ke�r� ; �p�)= K�1e(r�r ?)�C(K);where =(a) is be
ause V CBS(S; k; �p�) is homogenous of degree 1 in (S; k). So indeed,RR = P (K�1e2(r�r ?)�)�K�1e(r�r ?)�C(K) = 0.5.2.5 Proof of Proposition 3We start with a lemma 
hara
terizing the pri
e of puts for slightly more general strikes given by e�p�+�� .The pri
e of a put with strike e�p�+�� is by de�nitionC (e�p�+��) = E [Mt;t+�(St+�St � e�p�+��)+] = CD (e�p�+��)+ CND (e�p�+��) ;where CD (e�p�+��) = p�ED [Mt;t+�(St+�St � e�p�+��)+] ;and CND (e�p�+��) = (1� p�)END [Mt;t+�(St+�St � e�p�+��)+] :Let � = var ("? � ")1=2 :Lemma 6. We haveCND (e�p�+��) = e�p�V CBS (e��p� ; 1; �p�)+�CBS(�) (r � r? � �) � + o (�) ;and PND (e��p�+��) = V CBS (e��p� ; 1; �p�)+�CBS(�) (r? � r + �) � + o (�) :Proof. We �rst 
al
ulate the value of the 
all. By Lemma 4, we haveCND (e�p�+��) = (1� p�) V CBS (e�r ?� ; e(�r+�)�+�p� ; �p�)= (1� p�) e(�r+�)�+�p�V CBS (e(r�r ?��)���p� ; 1; �p�)= e�p� (1 + (�r � p + �) � + o (�))
[V CBS (e��p� ; 1; �p�)+�CBS(�) (r � r? � �) � + o (�)] ;61



by Taylor expansion. We observe that V CBS (e��p� ; 1; ��1=2) = O (p�), soCND (e�p�+��) = e�p�V CBS (e��p� ; 1; �p�)+�CBS(�) (r � r? � �) � + o (�) :The derivation of the put pri
e is similar.Lemma 7. P (e��p�+��)� e��p�+
�C (e�p�+��) is given by the following formulap�ED [(Je��p�+�� � J?)+ � (e��p�+
�J � J?e(�+
)�)+]+�CBS(�) (2 (r � r?) + � + �) � + o (�) :Proof. Clearly PND (e��p�+��)� e��p�+
�CND (e�p�+��) is given by
{V CBS (e��p� ; 1; �p�)+�PBS(�) (r? � r + �) �}� e��p�+
� {e�p�V CBS (e��p� ; 1; �p�)+�CBS(�) (r � r? � �) � + o (�)}= �CBS(�) (2 (r? � r) + � + �) � + o (�) :The result follows.With those two lemmas, the result in the proposition 
an be derived by taking � = � = 
 = r � r?.5.2.6 Proof of Proposition 4The impa
t of risk on interest rate 
omes from 1, written for the foreign 
ountry (with starred variables).By examining (6) and (7), one sees that it in
reases when F ? de
reases.6 Appendix B: Results when the Home Curren
y is the Invest-ment Curren
yWe de�ne the hedged 
arry-trade returns Yt;t+�(K) as the payo� 
orresponding to the following zero invest-ment trade: invest one in home at interest r; buy �Ct;t+�(K) 
alls with strike K prote
ting against an appre-
iation of the foreign 
urren
y and, in order to �nan
e these investments, borrow (1 + �Ct;t+�(K)Ct;t+�(K))in the foreign 
urren
y at interest rate r?: On
e again, we 
hoose the hedge ratio �Ct;t+� (K) to eliminatetail risk. Yt;t+�(K) = er� � (1 + �Ct;t+�Ct;t+�(K)) er ?� St+�St + �Ct;t+� (St+�St �K)+ ;62



where Pt;t+� (K) is the home 
urren
y pri
e of a put yielding (K � St+�St )+ in the home 
urren
y, andCt;t+�(K) is home 
urren
y pri
e of a 
all yielding (St+�St �K)+ in the home 
urren
y, and:�Ct;t+� = er ?�1� Ct;t+�(K)er ?� :Proposition 5. In the limit of small time intervals (� ! 0), the 
arry trade expe
ted returns (
onditional onno disasters) are given by the following equationlim�!0END [Yt;t+� ℄ =� = � lim�!0END [X℄ =�:In the same limit, the hedged 
arry trade expe
ted returns (
onditional on no disasters) are given bylim�!0END [Yt;t+� (e�p�)] =� = �pE [(J � J?)+]� 
ov ("; "� "?) (1��CBS(�)) ;where �CBS(�) = �V CBS (s; e�; var ("? � ")1=2) =�s js=1 2 (0; 1)are the Bla
k-S
holes deltas of the 
all.
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7 Appendix C: Robustness Che
ksIn this Appendix we report additional results obtained on the whole sample of advan
ed and emerging 
oun-tries.� Table 9 reports higher moments and normality tests for 
ountry-by-
ountry 
hanges in ex
hange rates.Table 10 reports the same tests after GARCH(1,1) 
orre
tions. Table 11 reports equivalent resultsfor portfolios of 
urren
y ex
ess returns.� Table 12 presents some examples of bid-ask spreads on advan
ed and emerging 
ountries.� Table 13 reports estimates of disaster risk premia for a subset of nine advan
ed 
ountries.� Table 14 reports average 
urren
y ex
ess returns a
ross portfolios using advan
ed and emerging 
oun-tries. Table 15 reports implied volatilities and risk reversals for the same sample. Table 16 reportsestimates of disaster risk premia. Table 17 takes into a

ount bid ask spreads.� Tables 18 and 20 report (
ontemporaneous and predi
tive) regressions on risk reversals, ex
hangerates and 
urren
y ex
ess returns for advan
ed 
ountries. Tables 19 and 21 report equivalent tests foradvan
ed and emerging 
ountries.� Table 22 reports predi
tability tests on bilateral ex
hange rates for advan
ed 
ountries.
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Table 9: Higher Moments of Bilateral Ex
hange Rates - All CountriesAdvan
ed Countries Emerging CountriesSkew. Kurt. J.B LL Skew. Kurt. J.B LLCanada 0:06 3:09 0:15 0:04 Argentina �5:79 40:88 5231:20 0:35[0:19℄ [0:34℄ 0:50 0:50 [1:66℄ [14:64℄ 0:00 0:00Switzerland 0:22 2:30 4:23 0:06 Brazil �0:25 7:31 90:07 0:09[0:12℄ [0:18℄ 0:09 0:22 [0:71℄ [1:16℄ 0:00 0:02Euro area 0:18 2:81 0:77 0:06 Chile �0:06 2:88 0:13 0:05[0:17℄ [0:27℄ 0:50 0:35 [0:23℄ [0:39℄ 0:50 0:50United Kingdom �0:33 3:89 7:69 0:04 Columbia �0:42 5:00 20:86 0:13[0:30℄ [0:74℄ 0:03 0:50 [0:42℄ [0:74℄ 0:00 0:00Japan 1:24 7:89 189:15 0:07 Indonesia �0:43 15:38 847:09 0:24[0:62℄ [2:96℄ 0:00 0:04 [1:50℄ [3:67℄ 0:00 0:00Sweden 0:26 2:88 1:73 0:05 India 0:53 10:38 317:38 0:18[0:16℄ [0:29℄ 0:36 0:41 [0:97℄ [2:42℄ 0:00 0:00Australia �0:06 2:84 0:25 0:05 Mexi
o �0:97 6:03 81:21 0:09[0:19℄ [0:33℄ 0:50 0:47 [0:45℄ [1:69℄ 0:00 0:01Norway 0:18 3:27 1:26 0:06 Malaysia 1:36 13:71 284:82 0:21[0:19℄ [0:31℄ 0:48 0:14 [1:87℄ [4:67℄ 0:00 0:00New Zealand �0:20 3:25 1:41 0:07 Peru �1:44 12:28 531:58 0:18[0:18℄ [0:32℄ 0:44 0:07 [0:96℄ [3:40℄ 0:00 0:00Israel 0:22 3:26 0:83 0:06 Philippines �2:07 13:45 699:72 0:22[0:27℄ [0:44℄ 0:50 0:50 [0:86℄ [3:39℄ 0:00 0:00Poland �0:16 3:08 0:44 0:05 Thailand 1:16 14:55 768:74 0:14[0:23℄ [0:41℄ 0:50 0:50 [1:32℄ [4:91℄ 0:00 0:00Singapore 0:37 6:31 72:46 0:08 Turkey �0:44 3:57 4:17 0:11[0:54℄ [1:34℄ 0:00 0:02 [0:30℄ [0:71℄ 0:08 0:01Cze
h Republi
 0:04 2:96 0:04 0:06 Taiwan �0:08 8:00 148:30 0:11[0:20℄ [0:33℄ 0:50 0:40 [0:73℄ [1:65℄ 0:00 0:00South Korea �2:52 23:41 2522:75 0:17 Venezuela �0:15 2:44 0:18 0:19[1:73℄ [7:97℄ 0:00 0:00 [0:56℄ [0:87℄ 0:50 0:31South Afri
a �0:13 3:19 0:62 0:05[0:18℄ [0:33℄ 0:50 0:50Notes: This table reports the skewness, kurtosis, and Jarque and Bera (1980) and Lilliefors (1967) normality tests of
hanges in ex
hange rates. The Jarque-Berra and Lilliefors's null hypothesis is a joint hypothesis of the skewness beingzero and the ex
ess kurtosis being 0. For the skewness and kurtosis, the table reports between bra
kets the standarderror obtained by bootstrapping. For the Jarque-Berra and Lilliefors tests, the table reports the p-values. The sampleex
lude China, Hong Kong and Denmark whose ex
hange rate regimes are non-
oating over the full sample period.The left panel fo
uses on advan
ed 
ountries. The sample period is 1/1996 - 8/2008.66



Table 10: Higher Moments of Bilateral Ex
hange Rates - GARCH(1,1) Corre
tion - Advan
edCountries Advan
ed CountriesSkew. Kurt. J.B LLCanada 0:11 2:90 0:36 0:00[0:18℄ [0:33℄ 0:50 0:50Switzerland 0:22 2:30 4:23 0:00[0:12℄ [0:18℄ 0:09 0:22Euro area 0:16 2:83 0:72 0:00[0:16℄ [0:27℄ 0:50 0:38United Kingdom �0:33 3:89 7:68 0:00[0:30℄ [0:76℄ 0:03 0:50Japan 1:14 7:18 142:95 0:00[0:57℄ [2:63℄ 0:00 0:08Sweden 0:26 2:88 1:73 0:00[0:15℄ [0:30℄ 0:36 0:41Australia �0:14 2:73 0:93 0:00[0:17℄ [0:30℄ 0:50 0:23Norway 0:18 3:27 1:25 0:00[0:20℄ [0:31℄ 0:49 0:14New Zealand �0:28 3:19 2:15 0:00[0:18℄ [0:32℄ 0:28 0:06Israel �0:03 3:28 0:27 0:00[0:28℄ [0:37℄ 0:50 0:48Poland �0:22 3:01 0:78 0:00[0:23℄ [0:44℄ 0:50 0:50Singapore �0:16 3:62 3:03 0:00[0:24℄ [0:39℄ 0:16 0:31Cze
h Republi
 0:09 2:89 0:25 0:00[0:21℄ [0:32℄ 0:50 0:50South Korea �0:58 4:45 19:51 1:00[0:28℄ [0:63℄ 0:00 0:01Notes: This table reports the skewness, kurtosis, and Jarque and Bera (1980) and Lilliefors (1967) normality tests ofnormalized 
hanges in ex
hange rates. In order to obtain these normalized series, we �rst estimate a GARCH(1,1)model for ea
h 
ountry's ex
hange rate (in log di�eren
es) and then divide the ex
hange rate by the standard deviation.The Jarque-Berra and Lilliefors's null hypothesis is a joint hypothesis of the skewness being zero and the ex
ess kurtosisbeing 0. For the skewness and kurtosis, the table reports between bra
kets the standard error obtained by bootstrapping.For the Jarque-Berra and Lilliefors tests, the table reports the p-values. The sample ex
lude China, Hong Kong andDenmark whose ex
hange rate regimes are non-
oating over the full sample period. The left panel fo
uses on advan
ed
ountries. The sample period is 1/1996 - 8/2008. 67



Table 11: Higher Moments of Portfolio Curren
y Ex
ess ReturnsPanel I: Advan
ed CountriesPortfolios 1 2 3Skewness 0:47 0:28 �0:60[0:16℄ [0:19℄ [0:40℄Kurtosis 2:90 3:28 5:04[0:39℄ [0:35℄ [1:16℄Jarque-Berra 5:64 2:40 35:33p-value 0:05 0:23 0:00Lilliefors 6:19 6:02 5:80p-value 0:17 0:20 0:25Panel II: All CountriesPortfolios 1 2 3 4Skewness 0:32 0:21 �2:23 1:26[0:18℄ [0:21℄ [0:95℄ [0:85℄Kurtosis 3:01 3:64 15:29 10:73[0:37℄ [0:35℄ [5:26℄ [3:61℄Jarque-Berra 2:55 3:63 1075:17 415:57p-value 0:21 0:11 0:00 0:00Lilliefors 6:00 7:51 12:16 10:13p-value 0:20 0:04 0:00 0:00Notes: This table reports higher moments of unhedged 
urren
y ex
ess returns. The table reports the skewness andkurtosis of ea
h portfolio and the 
orresponding standard errors. These are obtained by bootstrapping the monthlyex
ess returns under the assumptions that they are i.i.d. The table also reports the Jarque and Bera (1980) and Lilliefors(1967) normality tests and the p-value of the null hypothesis (a p-value below 5% indi
ates reje
tion of normality atthe 5% signi�
an
e level). The Lilliefors test statisti
 is multiplied by 100. Portfolio 1 
ontains 
urren
ies with thelowest interest rates. Portfolio 3 
ontains 
urren
ies with the highest interest rates. The horizon of the ex
ess returnsand the option maturity are one month. Data are monthly, from JP Morgan. The sample period is 1/1996 - 8/2008.68



Table 12: Bid-Ask Spreads - ExamplesEUR/USD USD/CHF AUD/USD USD/BRLPanel I: November 10, 2008Spot 1:2890 1:1730 0:6950 2:135010Æ Call 21:19=26:67 14:81=21:87 25:59=32:53 45=5225Æ Call 20:86=23:48 14:34=17:63 27:85=31:36 48=55ATM 20:75=23:25 14:00=17:00 30:38=34:13 34=4225Æ Put 22:01=24:72 14:95=18:30 34:02=38:26 20=2410Æ Put 23:41=28:88 16:00=22:45 36:96=44:99 23=28Panel II: January 20, 2009Spot 1:2930 1:1450 0:6580 2:365010Æ Call 22:60=25:00 19:80=22:80 20:=22:50 31:50=34:0025Æ Call 21:50=23:00 19:00=20:50 19:00=20:50 30:50=35:00ATM 21:5=22:50 18:70=20:20 18:70=20:20 34:50=36:5025Æ Put 22:30=23:50 19:30=21:00 19:50=21:20 48=5210Æ Put 23:80=26:00 20:50=23:50 20:70=23:80 41=43Notes: This table reports spot rates and implied volatilities at one-month horizons for di�erent pairs of 
urren
y options.Sour
e: Bank of Fran
e (Broker-Dealers: UBS, Citibank, Deuts
he Bank, JPM Chase). Panel I 
orresponds to quoteson November 10, 2008. Panel II 
orresponds to January 20, 2009.
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Table 13: Disaster Risk Premia - Nine Advan
ed Countries Sorted on Interest RatesPanel I: Carry Ex
ess ReturnsUnhedged Carry Hedged at 10 Æ Hedged at 25 Æ Hedged ATMMean 5:03 3:44 2:54 0:90[1:64℄ [1:54℄ [1:41℄ [1:23℄Mean Spread 1:59 2:48 4:12[0:40℄ [0:84℄ [1:30℄Panel II: Estimations10Æ 25Æ ATM 10Æ; 25Æ, GMMand ATM 2nd Stage�D 1:21 1:64 3:22 2:02 1:06[0:38℄ [0:92℄ [1:90℄ [1:01℄ [0:33℄�G 3:82 3:39 1:81 3:01 3:38[1:68℄ [1:85℄ [2:44℄ [1:89℄ [1:74℄�D � �G �2:61 �1:75 1:41 �0:99 �2:32[1:82℄ [2:44℄ [4:07℄ [2:57℄ [1:85℄Notes: This �rst panel of this table reports average returns on hedged and unhedged 
urren
y 
arry trades and theirstandard errors. Due to the small number of 
ountries in this sample, we only build two portfolios, sorting 
ountrieson interest rates. Carry trades 
orrespond to returns on the se
ond minus returns on the �rst portfolio. We 
onsiderdi�erent hedges: 10-delta, 25-delta and at-the-money. We also report the average di�eren
e between unhedged andhedged 
arry trades. The se
ond panel reports stru
tural estimates. �D denotes the part of the 
arry ex
ess returnlinked to disaster risk. �G 
orresponds to the Gaussian, non-disaster part of the same ex
ess return. These estimatesare obtained using hedged returns at 10-delta (�rst 
olumn), 25-delta (se
ond 
olumn), at-the-money (third 
olumn) or10-, 25-delta and at-the-money (fourth and �fth 
olumns). Standard errors are obtained by bootstrapping the monthlyex
ess returns under the assumptions that they are i.i.d. Data are monthly, from JP Morgan. The sample period is1/1996 - 8/2008.
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Table 14: Ex
ess Returns: All 
ountriesPortfolios 1 2 3 4 1 2 3 4Going Long Going ShortPanel I: UnhedgedMean �2:35 1:10 0:48 12:59 2:35 �1:10 �0:48 �12:59[1:75℄ [1:83℄ [2:20℄ [2:75℄ [1:83℄ [1:81℄ [2:18℄ [2:79℄Sharpe Ratio �0:36 0:17 0:06 1:30 0:36 �0:17 �0:06 �1:30Panel II: Hedged at 10-deltaMean �3:20 0:58 0:62 11:19 1:75 �1:16 �0:52 �11:89[1:73℄ [1:65℄ [1:65℄ [2:50℄ [1:66℄ [1:68℄ [2:13℄ [2:40℄Sharpe Ratio �0:52 0:10 0:10 1:27 0:29 �0:20 �0:07 �1:37Panel III: Hedged at 25-deltaMean �2:87 0:37 0:26 8:85 1:44 �1:03 �0:46 �10:55[1:50℄ [1:47℄ [1:43℄ [2:18℄ [1:41℄ [1:34℄ [1:79℄ [2:01℄Sharpe Ratio �0:55 0:07 0:05 1:16 0:28 �0:21 �0:07 �1:42Panel IV: Hedged ATMMean �1:91 0:23 0:01 5:35 0:39 �0:87 �0:47 �7:27[1:05℄ [1:12℄ [0:98℄ [1:50℄ [1:01℄ [0:98℄ [1:60℄ [1:46℄Sharpe Ratio �0:51 0:06 0:00 0:98 0:11 �0:25 �0:08 �1:38Notes: This table reports reports average 
urren
y ex
ess returns that are unhedged, hedged at 10-delta, at 25-deltaand at-the-money for our four portfolios. The last panel reports average risk reversals at 10- and 25-delta. In the leftse
tion, we assume that the US investor goes long the foreign 
urren
y. In the right se
tion, we assume that the USinvestor goes short the foreign 
urren
y. In ea
h 
ase, we report the mean ex
ess return, its standard deviation and the
orresponding Sharpe ratio. The mean and standard deviations are annualized (multiplied respe
tively by 12 and p12).The Sharpe ratio 
orresponds to the ratio of the annualized mean to the annualized standard deviation. Portfolio 1
ontains 
urren
ies with the lowest interest rates. Portfolio 4 
ontains 
urren
ies with the highest interest rates. Thehorizon of the ex
ess returns and the option maturity are one month. Data are monthly, from JP Morgan. The sampleperiod is 1/1996 - 8/2008.
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Table 15: Implied Volatilities and Risk Reversals: All CountriesPortfolios 1 2 3 4Panel I: Implied Volatilities10Æ�Put 9:64 9:90 11:26 17:44[0:21℄ [0:20℄ [0:40℄ [0:66℄25Æ�Put 9:12 9:29 10:21 15:57[0:18℄ [0:19℄ [0:35℄ [0:60℄ATM 8:91 8:79 9:31 13:99[0:19℄ [0:18℄ [0:34℄ [0:59℄25Æ�Call 9:25 8:93 9:24 13:39[0:20℄ [0:18℄ [0:32℄ [0:56℄10Æ�Call 9:89 9:31 9:49 13:29[0:20℄ [0:17℄ [0:34℄ [0:55℄Panel II: Risk Reversals (Implied Volatilities)Mean RR10 �0:25 0:59 1:77 4:15[0:08℄ [0:06℄ [0:10℄ [0:17℄Mean RR25 �0:13 0:36 0:97 2:18[0:04℄ [0:03℄ [0:05℄ [0:08℄Panel III: Risk Reversals (Pri
es)Mean RR10 0:04 1:17 2:94 7:11[0:11℄ [0:09℄ [0:20℄ [0:37℄Mean RR25 0:75 2:80 5:91 14:38[0:20℄ [0:17℄ [0:44℄ [0:94℄Notes: This table reports average implied volatilities and risk reversals by portfolios. The �rst panel reports averageimplied volatilities on put and 
all 
ontra
ts for strike pri
es 10-, 25-delta and at-the-money. The last two panelsreports risk reversals at 10- and 25-deltas. The se
ond panel 
orresponds to di�eren
es in implied volatilities. Theyare quoted in annual per
entages. The third panel 
orresponds to di�eren
es in pri
es. They are quoted in basis points(1=100th of a per
entage point). Standard errors are obtained by bootstrapping the monthly ex
ess returns under theassumptions that they are i.i.d. Portfolio 1 
ontains 
urren
ies with the lowest interest rates. Portfolio 4 
ontains
urren
ies with the highest interest rates. The horizon of the ex
ess returns and the option maturity are one month.Data are monthly, from JP Morgan. The sample period is 1/1996 - 8/2008.72



Table 16: Disaster Risk Premia - All CountriesPanel I: Carry Ex
ess ReturnsUnhedged Carry Hedged at 10Æ Hedged at 25Æ Hedged ATMMean 14:94 12:95 10:28 5:74[2:85℄ [2:64℄ [2:31℄ [1:54℄Mean Spread 1:99 4:66 9:20[0:50℄ [0:96℄ [1:70℄Panel II: Estimations10Æ 25Æ ATM 10Æ; 25Æ; ATM�D 0:55 1:23 3:46 1:75[0:47℄ [0:85℄ [1:61℄ [0:92℄�G 14:39 13:71 11:48 13:19[2:93℄ [3:02℄ [3:02℄ [2:80℄�D � �G �13:83 �12:48 �8:01 �11:44[3:08℄ [3:35℄ [3:94℄ [3:11℄Notes: This �rst panel of this table reports average returns on hedged and unhedged 
urren
y 
arry trades and theirstandard errors. We use the 
urren
y portfolios presented in Table 14. Carry trades 
orrespond to returns on the lastminus returns on the �rst portfolio. We 
onsider di�erent hedges: 10-delta, 25-delta and at-the-money. We also reportthe average di�eren
e between unhedged and hedged 
arry trades. The se
ond panel reports stru
tural estimates. �Ddenotes the part of the 
arry ex
ess return linked to disaster risk. �G 
orresponds to the Gaussian, non-disaster partof the same ex
ess return. These estimates are obtained using hedged returns at 10-delta (�rst 
olumn), 25-delta(se
ond 
olumn), at-the-money (third 
olumn) or 10-, 25-delta and at-the-money (fourth 
olumn). Standard errorsare obtained by bootstrapping the monthly ex
ess returns under the assumptions that they are i.i.d. Data are monthly,from JP Morgan. The sample period is 1/1996 - 8/2008.
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Table 17: Disaster Risk Premia - All Countries - With Transa
tion CostsPanel I: Carry Ex
ess ReturnsUnhedged Carry Hedged at 10Æ Hedged at 25Æ Hedged ATMMean 12:79 11:09 8:02 3:34[2:90℄ [2:71℄ [2:29℄ [1:58℄Mean Spread 1:70 4:77 9:44[0:52℄ [1:00℄ [1:81℄Panel II: Estimations10Æ 25Æ ATM 10Æ; 25Æ; ATM�D 0:47 2:10 6:10 2:89[0:48℄ [0:88℄ [1:66℄ [0:95℄�G 12:32 10:69 6:69 9:90[2:94℄ [2:90℄ [3:11℄ [2:97℄�D � �G �11:85 �8:59 �0:59 �7:01[3:03℄ [3:27℄ [4:04℄ [3:31℄Notes: This �rst panel of this table reports average returns on hedged and unhedged 
urren
y 
arry trades and theirstandard errors. We use the 
urren
y portfolios presented in Table 14. Carry trades 
orrespond to returns on the lastminus returns on the �rst portfolio. We 
onsider di�erent hedges: 10-delta, 25-delta and at the money. We also reportthe average di�eren
e between unhedged and hedged 
arry trades. The se
ond panel reports stru
tural estimates. �Ddenotes the part of the 
arry ex
ess return linked to disaster risk. �G 
orresponds to the Gaussian, non-disaster partof the same ex
ess return. These estimates are obtained using hedged returns at 10-delta (�rst 
olumn), 25-delta(se
ond 
olumn), at-the-money (third 
olumn) or 10-, 25-delta and at-the-money (fourth 
olumn). Standard errorsare obtained by bootstrapping the monthly ex
ess returns under the assumptions that they are i.i.d. Data are monthly,from JP Morgan. The sample period is 1/1996 - 8/2008. We assume annual transa
tion 
osts on unhedged returnsof 0:25% and 2% on respe
tively advan
ed and emerging 
ountries. We assume bid-ask spreads of 5% and 10% onimplied volatilities (respe
tively for advan
ed or developing 
ountries).
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Table 18: Changes in Risk Reversals and Ex
hange Rates: Contemporaneous Spe
i�
ationsDependant Variable: Ex
hange RatesPanel I: Raw Variables Panel II: Demeaned VariablesRisk Reversals -49.95 -41.02Strike: Forward +/- 10% [9.47 ℄*** [6.24 ℄***Risk Reversals -32.78 -26.22Strike: Forward +/- 5% [2.21℄*** [2.47℄***Risk Reversals -102.65 -41.02Strike: Delta 10 [7.03 ℄*** [6.24 ℄***Risk Reversals -63.14 -30.69Strike: Delta 25 [3.99 ℄*** [3.95 ℄***Observations 1667 1759 1776 1776 1667 1759 1776 1776R2 0.08 0.21 0.23 0.23 0.04 0.05 0.04 0.05Notes: This table do
uments 
ontemporaneous relationships between 
hanges in nominal ex
hange rates and 
hangesin risk reversals. All spe
i�
ations in
lude 
urren
y-�xed e�e
ts. Panel I presents results based on raw variables. PanelII uses 
ross-se
tionally demeaned variables to 
ontrol for the spe
i�
 role of the US Dollar. Changes in ex
hangerates 
orrespond to monthly log 
hanges. Changes in risk reversals 
orrespond to �rst di�eren
es. risk reversals arenormalized by spot rates. Standard errors obtained from bootstrap pro
edures using 1000 repli
ations are presentedbelow the point estimates. The symbols ***, ** and * indi
ate statisti
al signi�
an
e at 1, 5 and 10 per
ent 
on�den
elevels. The sample 
omprises 
urren
ies from advan
ed 
ountries. Data are monthly, from JP Morgan. The sampleperiod is 01/1996 -08/2008.
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Table 19: Risk Reversals and Ex
hange Rates: Contemporaneous Spe
i�
ations - All CountriesDependant Variable: Ex
hange RatesPanel I: Raw Variables Panel II: Demeaned VariablesRisk Reversals -19.71 -19.07Strike: Forward +/-10% [7.07℄*** [7.35℄***Risk Reversals -18.23 -15.93Strike: Forward +/-5% [2.76℄*** [3.58℄***Risk Reversals -18.48 -10.28Strike: Delta 10 [34.78℄ [33.21℄Risk Reversals -9.90 -6.84Strike: Delta 25 [17.25℄ [15.44℄Observations 1638 1741 1760 1760 1638 1741 1760 1760R-squared 0.05 0.18 0.21 0.2 0.03 0.05 0.06 0.04Notes: This table do
uments 
ontemporaneous relationships between 
hanges in nominal ex
hange rates and 
hangesin risk reversals. All spe
i�
ations in
lude 
urren
y-�xed e�e
ts. Panel I presents results based on raw variables. PanelII uses 
ross-se
tionally demeaned variables to 
ontrol for the spe
i�
 role of the US Dollar. Changes in ex
hangerates 
orrespond to monthly log 
hanges. Changes in risk reversals 
orrespond to �rst di�eren
es. risk reversals arenormalized by spot rates. Standard errors obtained from bootstrap pro
edures using 1000 repli
ations are presentedbelow the point estimates. The symbols ***, ** and * indi
ate statisti
al signi�
an
e at 1, 5 and 10 per
ent 
on�den
elevels. The sample 
omprises 
urren
ies for the full sample of available 
ountries. Data are monthly, from JP Morgan.The sample period is 01/1996 -08/2008.
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Table 20: Risk Reversals, Ex
hange Rates and Curren
y Ex
ess Returns: Predi
tive Spe
i�
ationsDependant Variable: Panel I: Ex
hange Rates Panel II: Curren
y Ex
ess ReturnsInterest Rate Di�erential -0.58 -0.61 -0.58 -0.72 -0.732 -1.58 -1.61 -1.73 -1.78 -1.74[0.616℄ [0.626℄ [0.36℄ [0.41℄ [0.4℄* [0.615℄** [0.37℄*** [0.41℄*** [0.40℄*** [0.41℄***Risk Reversal 2.37 2.31Strike: Forward +/-10% [6.15℄ [5.86℄Risk Reversal -1.87 -1.82Strike: Forward +/-5% [1.85℄ [1.86℄Risk Reversal -5.4 -5.28Strike: Delta 10 [2.93℄* [2.89℄*Risk Reversal -7.1 -6.96Strike: Delta 25 [4.45℄ [4.79℄R2 0.01 0.015 0.01 0.01 0.01 0.034 0.037 0.036 0.035 0.038Observations 1776 1666 1738 1750 1750 1776 1738 1750 1750 1750Notes: This table presents results of predi
tability tests. We regress monthly 
hanges in nominal ex
hange rates (panelI) or monthly 
urren
y ex
ess returns (panel II) on risk reversals and interest di�erentials. The interest di�erentialis de�ned as the di�eren
e between the domesti
 and the foreign interest rate. The null hypothesis of UIP notbeing reje
ted is a 
oeÆ
ient of 1 for the interest rate di�erential in panel I and a 
oeÆ
ient of zero in panel II.All spe
i�
ations in
lude 
urren
y-�xed e�e
ts. Standard errors obtained from a bootstrap pro
edure using 1000repli
ations are presented below their respe
tive point estimates. ***,**,* indi
ates statisti
al signi�
an
e at 1, 5,10 per
ent 
on�den
e levels. The sample 
omprises 
urren
ies from advan
ed 
ountries. Data are monthly, from JPMorgan. The sample period is 01/1996 -08/2008.
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Table 21: Risk Reversals, Ex
hange Rates and Curren
y Ex
ess Returns: Predi
tive Spe
i�
ations- All CountriesDependant Variable: Panel I: Ex
hange Rates Panel II: Curren
y Ex
ess ReturnsInterest Rate Di�erential 0.86 0.96 0.89 0.79 0.78 -0.13 -0.00 -0.09 -0.12 -0.09[0.32℄*** [0.37℄** [0.34℄*** [0.31℄*** [0.36℄** [0.34℄ [0.38℄ [0.36℄ [0.33℄ [0.34℄Risk Reversal 2.99 3.96Strike: Forward +/-10% [2.39℄ [2.43℄Risk Reversal 1.82 2.21Strike: Forward +/-5% [1.18℄ [1.24℄*Risk Reversal -2.42 0.29Strike: Delta 10 [5.95℄ [5.57℄Risk Reversal -1.07 0.55Strike: Delta 25 [3.72℄ [3.4℄R-squared 0.0711 0.0788 0.075 0.0716 0.016 0.025 0.021 0.0167 0.0163 0.0167Observations 3580 3129 3427 3576 3576 3580 3129 3427 3576 3576Notes: This table presents results of predi
tability tests. We regress monthly 
hanges in nominal ex
hange rates (panelI) or monthly 
urren
y ex
ess returns (panel II) on risk reversals and interest di�erentials. The interest di�erentialis de�ned as the di�eren
e between the domesti
 and the foreign interest rate. The null hypothesis of UIP notbeing reje
ted is a 
oeÆ
ient of 1 for the interest rate di�erential in panel I and a 
oeÆ
ient of zero in panel II.All spe
i�
ations in
lude 
urren
y-�xed e�e
ts. Standard errors obtained from a bootstrap pro
edure using 1000repli
ations are presented below their respe
tive point estimates. ***,**,* indi
ates statisti
al signi�
an
e at 1, 5, 10per
ent 
on�den
e levels. The sample 
omprises 
urren
ies from advan
ed and emerging 
ountries. Data are monthly,from JP Morgan. The sample period is 01/1996 -08/2008.
78



Table 22: Risk Reversals and Ex
hange Rate Changes: Curren
y by Curren
y Predi
tive Spe
i�
a-tionsCountry Code CAN CAN CHE CHE EUR EUR GBR GBR JPN JPN AUS AUS SWE SWEInterest Rate Di�erential -2.23 -2.23 -4.1 -3.96 -4.13 -3.96 -0.91 -0.74 -1.37 -1.28 -4.26 -4.48 -3.49 -3.18[1.66℄ [1.64℄ [1.80℄** [1.86℄** [1.68℄** [1.72℄** [1.84℄ [1.82℄ [1.64℄ [1.65℄ [1.66℄** [1.69℄*** [1.37℄** [1.38℄**Risk Reversal 0.3 -4.93 -8.1 -9.8 6.44 14.03 -22.29Strike: Delta 10 [16.89℄ [18.34℄ [18.84℄ [15.84℄ [9.72℄ [24.88℄ [20.57℄Observations 150 150 150 150 115 115 150 150 150 150 150 150 150 150R-squared 0.01 0.01 0.03 0.03 0.05 0.05 0 0 0 0.01 0.04 0.05 0.04 0.05Country Code NOR NOR NZL NZL ISR ISR POL POL SGP SGP CZE CZE KOR KORInterest Rate Di�erential -2.03 -2.22 -2.5 -2.49 0.47 1.21 0.59 1.23 -0.6 -0.6 0.37 0.11 1.7 1.92[1.12℄* [1.13℄* [1.54℄ [1.55℄ [1.14℄ [1.51℄ [0.72℄ [1.07℄ [1.92℄ [1.92℄ [0.39℄ [0.38℄ [0.62℄*** [0.51℄***Risk Reversals 9.65 3.11 13.28 17.23 4.14 -12.61 14.98Strike: Delta 10 [19.17℄ [22.22℄ [18.99℄ [17.32℄ [13.44℄ [8.30℄ [18.16℄Observations 150 150 150 150 78 78 99 99 150 150 134 134 136 134R-squared 0.02 0.02 0.02 0.02 0 0.01 0.01 0.01 0 0 0 0.02 0.12 0.14Notes: This table presents results of predi
tability tests. We regress monthly 
hanges in nominal ex
hange rateson risk reversals and interest di�erentials. The interest di�erential is de�ned as the di�eren
e between the domesti
and the foreign interest rate. The null hypothesis of UIP not being reje
ted is a 
oeÆ
ient of 1 for the interest ratedi�erential. Standard errors obtained from a bootstrap pro
edure using 1000 repli
ations are presented below the pointestimates. The symbols ***, **, * indi
ate statisti
al signi�
an
e at 1, 5, and 10 per
ent 
on�den
e levels. We fo
uson advan
ed 
ountries. We ex
lude observations that do not 
orrespond to a 
oating ex
hange rate regime a

ordingto IMF De Fa
to 
lassi�
ation. Data are monthly, from JP Morgan. The sample period is 01/1996 -08/2008.
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