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Abstract

Non-linearities are often important considerations in many applications in finance and eco-

nomics such as pricing securities, computing equilibria, and conducting structural estimations.

This paper generalizes the class of transform analysis for affine jump diffusions in Duffie, Pan,

and Singleton (2000), which facilitates analytical treatment of a wide range of such problems.

We apply our method to several examples, including option pricing, modeling nonlinear Taylor

rules, modeling correlated defaults, and GMM estimation. We also provide detailed analysis of

the power of our method in three concrete examples: (1) pricing defaultable bonds with state-

dependent recovery; (2) computing the equilibrium of a Lucas economy with non-i.i.d. trees; and

(3) computing equilibrium in an economy with investors having heterogeneous beliefs about a

variety of fundamentals .
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1 Introduction

In this paper, we provide analytical treatment of a class of transforms for state variables that follow

affine jump-diffusions (AJD). With the ability to handle a very general class of nonlinearities, the

transform analysis brings analytical and computational tractability to a wide range of problems

in economics and finance. We illustrate the application of the generalized transform analysis with

a variety of examples, including pricing options, term structure modeling, credit risk modeling,

method of moment estimations, computing the equilibrium of consumption-based asset pricing

models, and a general class of difference-of-belief models.

For a state variable Xt that follows an affine process (in the sense that the conditional char-

acteristic function is affine1), Duffie et al. (2000), hereafter DPS, derive closed-form expression for

the following transform:

Et

[
exp

(
−
∫ T

t
R (Xs, s) ds

)
eu·XT (v0 + v1 ·XT ) 1{α·XT <y}

]
, (1)

where R (X) is an affine function of X, which can be interpreted as the stochastic “discount rate”,

and eu·XT (v0 + v1 ·XT ) 1{α·XT <y} is the terminal payoff function at time T .

We generalize the DPS result by deriving closed-form expression (up to an integral) for the

following generalized transform:

Et

[
exp

(
−
∫ T

t
R (Xs, s) ds

)
f (α ·XT ) g (β ·XT )

]
, (2)

where f can be linear function, a log-linear function, or the product of the two; g is a piecewise

continuous function with at most polynomial growth (or more generally a tempered distribution)

satisfying certain regularity conditions. When f(X) = eu·X (v0 + v1 ·X) and g(α ·X) = 1{α·XT <y},

we recover the transform of DPS. The abundant flexibility in choosing function g helps address

many nonlinearity problems in pricing (nonlinear discount factors or payoffs), estimation (nonlinear

moments), and economic modeling. We provide several example applications for the generalized

transform analysis to highlight its power.

The primary analytic tool that we use is the Fourier transform. In particular, we utilize knowl-

edge of the conditional characteristic function of the state variabel Xt (under certain forward

measures) jointly with a Fourier decomposition of the non-linearity in g. As we show, this com-

bination produces expressions for our generalized transform which remain tractable by avoiding

intermediate Fourier inversions.

Option pricing. When pricing standard European options, the payoff function can be expressed

as the product of an exponential function and an indicator function. In this case, we recover the

DPS transform as a special case.

1See Duffie et al. (2003) for an elaboration on the characterization via the characteristic function.
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Term structure modeling. We consider a nonlinear Taylor Rule model that generalizes the

model of fed funds target in Piazzesi (2005). With the generalized transform, we have more freedom

in modeling the fed policy function. The policy function can be chosen to maintain the requirement

that the fed target rate f is non-negative, has increments in a multiple of 25 basis points, and

depend on macro variables such as GDP growth and inflation, but without the restriction that the

distribution of f have the exponential-affine Laplace transform. One application of such a model

is to price fed funds futures.

Credit risk modeling. We introduce a simple model of default contagion that violates the

doubly stochastic assumption in that the default event of one firm affects the default probability of

another firm beyond its own default intensity. The flexibility of modeling the default probability for

the secondary firm after the default of the primary firm makes it easy to capture the nonlinearity

and time-dependence of the contagion effects.

Defaultable bond is a good example with nonlinear payoffs, since the recovery rate at default has

to be between 0 and 1, and has been empirically shown to nonlinearly depend on macro and firm-

specific variables. We introduce a class of state-dependent recovery models into the reduced-form

models of default, which substantially relaxes the “recovery of market value” assumption standard

in current literature. We derive closed form solutions for the pricing of defaultable zero-coupon

bond. The model can also be used to price other credit derivatives such as credit default swaps or

recovery locks2. Our example of Cauchy recovery model demonstrates that ignoring the correlation

between recovery rates and default intensity can lead to substantial deviations in credit spreads,

especially for bonds with high or low credit quality.

Method of moments estimation. The need to compute unconditional and conditional mo-

ments of nonlinear functions arise in the method of moments and GMM estimations. We use

the example of term structures of conditional corporate default probabilities and provide a GMM

estimation procedure.

Computing the equilibrium of asset pricing models. Besides nonlinear payoffs, nonlinear

discount factors often arise in asset pricing models. We use the example of the Lucas model with

two trees. We show that it is straightforward to extend the two tree model of Cochrane et al.

(2008) to allow for mean reversion and conditional heteroscedasticity in dividend growth. We use

the model to analyze the equilibrium effect of growth-value stocks.

Difference-of-opinion models. Even when fundamentals follows simple dynamics, non-linearity

in discount factors may arrive due to heterogeneous beliefs among agents. Agents may disagree

regarding expected changes and volatility of fundamentals and also the likelihood and magnitude

of jumps in the state of the economy. In equilibrium, beliefs then become important determinants

2This is a forward contract that requires no upfront or running payments, and allows purchase or sale of underlying
bonds at a predetermined price if a credit event occurs.
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of asset prices. Thus, differences in opinions regarding higher order beliefs become relevant as well.

We examine the effects of disagreement regarding jump intensity on asset prices.

Our paper is most closely related to Duffie et al. (2000), which is widely used in term structure

modeling, option pricing, and econometric estimations of affine models. Examples include Singleton

(2001), Pan (2002), Piazzesi (2005), and Joslin (2009), etc. The generalized transform in this paper

extends the DPS method to a general class of nonlinear functions.

Fourier transform methods are commonly used in the solutions of nonlinear PDEs which arise

natural in finance and economics through the Feynman-Kac methodology. For example, Heston

(1993) computes the risk-neutral exercise probabilities for options in an affine stochastic volatility

model through Fourier inversion of the conditional characteristic function. Martin (2008) uses the

Fourier transform to address the nonlinearities in the pricing kernel that arise in a Lucas economy

with two i.i.d. endowment processes. The conditional characteristic functions from the Fourier

transform is known in closed form in this special case. Using the generalized transform, we can not

only relax the i.i.d. restriction and model log dividends as a general affine process instead , but

also allow for different utility functions and preference shocks.

The paper proceeds as follows. Section 2 gives the main theoretical results on the transform.

Section 3 outlines various areas where the transform analysis can be applied. Section 4 investigates

three concrete example applications of the generalized transform analysis. Section 5 concludes.

2 Generalized Transforms

In this section, we outline our theoretical results. Full details are deferred to the Appendix. As

in DPS, we begin by fixing a probability space (Ω,F , P ) and an information filtration {Ft}, and

suppose that X is a Markov process in some state space D ⊂ R
n satisfying the stochastic differential

equation

dXt = (K0 +K1Xt)dt +
√
H0 +H1 ·XtdBt + dZt, (3)

where B is an Ft-standard n-dimensional Brownian motion and Z is pure jump process with arrival

intensity λt = λ0 + λ1 · Xt with fixed D-invariant distribution ν. For brevity, let Θ denote the

parameters of the process (K0,K1,H0,H1, λ0, λ1, ν). Alternatively, we can more precisely define

the process in terms of the infinitesimal generator or, as Duffie et al. (2003) and Singleton (2001)

stress, in terms of the conditional characteristic function.

2.1 Transform Analysis

In order to establish our main result, let us first review some basic concepts from distribution

theory. A function f : R
N → R which is smooth and rapidly decreasing in the sense that for any

multi-index α and any N ∈ N, ‖f‖N,α ≡ supx|∂αf(x)|(1 + |x|)N < ∞ is referred to as a Schwartz

function. The collection of all Schwartz functions is denoted S. S is endowed with the topology

generated by the family of semi-norms ‖f‖N,α. The dual of S, denoted S∗ and also called the set of

tempered distributions, is the set of continuous linear functionals on S. Any piecewise continuous
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function which has at most polynomial growth in the sense that |g(x)| < |x|p for some p and x

large enough is seen to be a tempered distribution through the map

g : S → R g : f 7→
∫

x∈RN

g(x)f(x)dx (4)

Many tempered distributions do not arrive from functions. An important example is the δ-

function, δ : h 7→ h(0). For our considerations, the key property is that the set of tempered

distributions is suitable for Fourier analysis. For example, a function which is bounded may not

have a Fourier transform in the sense of a function, but will possess a Fourier transform that is a

tempered distribution. An example is the Heaviside function:

f(x) = 1{x≤0} ⇒ f̂(s) =
1

2
δ(s) − 1

2πs
(5)

Considering distributions allows us to consider functions which are not integrable and thus in

particular may not decay at infinity and may not even be bounded.

We now state our main result:

Theorem 1. Suppose that f (s) = exp (s), g ∈ S∗ and (Θ, α, β) satisfies Assumption 1 and As-

sumption 2 in Appendix A. Then

H (f, g, α, β) = E0

[
exp

(
−
∫ T

0
R(Xs)ds

)
f (α ·XT ) g(β ·XT )

]

= 〈ĝ, G(α + ·βi)〉 (6)

where ĝ ∈ S∗ and G(α+ ·βi) denotes the function

s 7→ G(α+ sβi) = E0[e
−
∫ T
0

rudueα+isβ ]. (7)

The function G is the transform given in DPS. Recalling their result,

G(α + isβ) = eA(T ;α+isβ,Θ)+B(T ;α+isβ,Θ)·X0

where A,B satisfy the ODE/BVP:

Ḃ = K⊤
1 B +

1

2
B⊤H1B − ρ1 + λ1(φ(B) − 1) B(0) = α+ isβ (8)

Ȧ = K⊤
0 B +

1

2
B⊤H0B − ρ0 + λ0(φ(B) − 1) A(0) = 0 (9)

where φ(c) = Eν [ec·Z ], the moment-generating function of the jump distribution.

In the special case that ĝ defines a function, we can write the result as

H =

∫ ∞

−∞
ĝ(s)G(α + isβ)ds (10)
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Fourier transforms of many functions are known in closed form. See, for example, Folland

(1984). Additionally, standard rules allow for differentiation, integrations, products, convolutions

and other operations to be conducted while maintaining closed form expressions. However, even in

the case that the function ĝ is not known in closed form, it can be computed readily.

In some cases of interests, Assumption 2 may be violated. β · XT may have heavy tails so

that, for example, E[(β · XT )4] = ∞. Another example would be in a pure-jump process where

the density may not be continuous. Depending on the case, our result can often be extended by

limiting arguments or by considering different function spaces (such as Sobolev spaces for non-

smooth densities.)

It is worth noting that there is some flexibility in the choice of α and g. This is because

eα·XT g(β · XT ) = e(α−cβ)·XT g̃(β · XT ) where g̃(s) = ecsg(s). This flexibility may be beneficial in

the case that g in not integrable but decreases rapidly as s approaches either +∞ or −∞.3 In this

case, it may be computationally beneficial use such a transformation to apply (10) and avoid the

use of distributions.

2.2 Extensions of Generalized Transforms

The result above is easily extended in a number of ways. First, we can extend f to exponential

polynomials. That is, f can take the form

f (α, v,X) =
∑

i

pi (vi ·X) Real
(
eαi·X

)
, (11)

where {pi} are arbitrary polynomials and {αi} are complex vectors.4 To stress the flexibility of

this form, we will refer to any function which can be expressed as the product of a polynomial and

a log-linear function as in (11) as pl-linear (polynomial-log-linear), while the rest of the functions

as non-pl-linear.

Proposition 1. Suppose that vi, αi ∈ R
N , g ∈ S∗ and (Θ, α, β) satisfies Assumption 1 and

Assumption 2 in Appendix A. Then

H (f, g, α, β) = E0

[
exp

(
−
∫ T

0
R(Xs)ds

)
(vi ·XT )nieαi·XT g(β ·XT )

]

= 〈ĝ, G(α + ·βi)〉 (12)

where ĝ ∈ S∗ and Gi(α + ·βi) denotes the function

s 7→ Gi(α+ sβi) = E0[e
−
∫ T
0 rudu(vi ·XT )nieα+isβ]. (13)

The function Gi is computed by solving the associated ODE/BVP in Appendix A.

3The logit function is such an example.
4Allowing complex eigenvalues allows one to have oscillatory sin and cos terms.
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Next, at the expense of a multi-dimensional Fourier inversion, we can allow g to depend on X

in more general ways. That is, instead of g(β ·X), we consider g(β1 ·X, · · · , βM ·X) for M ∈ N.

Proposition 2. Suppose that f (s) = exp (s), g ∈ S∗
M (an M -dimensional tempered distribution),

α ∈ R
N , B ∈ R

M×N and (Θ, α,B) satisfies Assumption 1 and Assumption 2 in Appendix A. Then

H (f, g, α, β) = E0

[
exp

(
−
∫ T

0
R(Xs)ds

)
f (α ·XT ) g(BXT )

]

= 〈ĝ, G(α + ·βi)〉 (14)

where ĝ ∈ S∗ and GM (α+ ·βi) denotes the function

GM : C
M → C , s 7→ GM (α+ s⊤Bi) = E0[e

−
∫ T
0 rudueα+is⊤B ]. (15)

This extension relaxes an important restriction for the nonlinear function g(·) in the generalized

transform in Theorem 1, where g(·) only depends on X through the linear combination β ·X. In

that case, the marginal impact of Xi on g will be proportional to βi, which might be too restrictive

in some cases. Proposition 2 removes this restriction, with the caveat that the problem is subject

to the curse of dimensionality as M gets large.

3 Applications

3.1 Option Pricing

We first show that the generalized transform analysis can recover the DPS result as a special case.

We use option pricing as an example.

As shown in DPS, for pricing European options, we want to evaluate the transform:

M = EQ
t

[
e−

∫ T
0 rsds+α·XT gy(β ·XT )

]
. (16)

where gy(x) = 1{x≤y} is nonlinear and non-integrable. For example, for an European put option

with strike K, Xt will be the log stock price, y = logK,

P0 = EQ
t

[
e−

∫ T
0

rsds+ygy(XT )
]
− EQ

t

[
e−

∫ T
0

rsds+XT gy(XT )
]
. (17)

However, the fourier transform is defined as a distribution:

ĝy(s) =
1

2
δ(s) +

eiπys

2πis
(18)

where δ, the dirac-δ function, is the distribution defined by the relation

∫
δ(x)h(x)dx = h(0) (19)
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This replicates the formula given in DPS obtained by Levy-inversion.

3.2 Nonlinear Taylor Rule

Through open market operations, the federal reserve targets the federal funds rate, the interest

rate at which depository institutions lend balances at the Federal Reserve to other depository

institutions overnight. The target is set by the Federal Open Market Committee which holds eight

regularly scheduled meeting throughout the year as well as additional meetings whenever needed.

The federal funds target rate can be viewed as a primitive in determining the yield curve.

A common approach to modeling fed policy is in the form of a simple Taylor rule (Taylor

(1993)),

ft = β0 + β1πt + β2gt + ǫt (20)

where ft denotes the fed funds target rate at time t, πt denotes inflation, gt represents a measure

of the output gap, and ǫt is the monetary policy shock. This gives a simple representation of the

Fed’s goal of price stability and sustainable economic growth.

Several potential deficiencies with such a simple rule are apparent. The fed target rate nec-

essarily must be non-negative. This directly induces a nonlinearity. Additionally, the fed must

implicitly consider this lower bound for future policy in setting current policy. Also, the target is

typical a multiple of 25 basis points. Finally, the policy rule may incorporate other variables such

as credit conditions or forward-looking variables.

Piazzesi (2005) uses pure jump processes with deterministic jump times to model fed funds

target ft. Let Xt be a vector summarizing economic conditions, which may contain inflation and

growth measures, as in a Taylor rule, as well as possibly other macroeconomic variables such

as unemployment. Piazzesi (2005) computes the prices of fixed income securities in this setting

when the timing of jumps in f occur with stochastic intensity during FOMC meetings. In this

specification, the distribution of jump size does not depend on the state variable. This implies that

the moment-generating function, conditional on pre-meeting information, maintains an affine form

Et0 [e
aft ] = eAa+Ba·Xt0 . (21)

This assumption implies, among other things, that the expected policy response is linear in the

state. In other words, in expecation a linear Taylor rule holds in the case that the state variables

are the Taylor rule inputs, but there may be non-normal policy shock deviations from the linear

rule. However, as elaborated below, our specification allows for a nonlinear policy response and

thus inherently nonlinear expectations. We elaborate below on the empirical relevance of such

nonlinearities.

Figure 1 plots the historical quarterly time series of the fed funds rate. Also plotted are the fed
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Figure 1: Federal Funds Rate and Taylor Rule. This figure plots the Federal Funds Rate on
a quarterly basis. The red line indicates the rate prescribed by the simple Taylor rule (22). The
blue line indicates the rate prescribed by the regression Taylor rule (23).

funds rate prescribed by two Taylor Rules:

rt = 1% + 1.5πt + .5gt + ǫt (22)

rt = 1.19% + 1.49πt + .09gt + ǫt (23)

The parameters in (22) correspond to the parameters in Taylor (1993) while the parameters in (23)

are computed by an OLS regression. The federal funds rate is from Federal Reserve release H.15.

The output gap is the real GDP output gap as computed by the Congressional Budget Office.

For both cases, the rule underestimates the response when actual rates are lowest (see Figure 2.)

This suggests a nonlinearity in the form of more aggressive action in extreme situations. However,

the natural lower limit of 0% also limits the policy action in extreme situations, introducing another

nonlinearity. Thus it may be very natural to generate a simple nonlinear policy rule to model the

Fed’s policy action.5

The generalized transform technique allows us to consider more flexible nonlinear policy rules.

Define a policy rule G(β ·XT ) so that at a meeting at date T , the fed sets a target of G(β ·XT ). The

function G can be chosen such that it generates movements in ft in a multiple of 25 basis points.

Suppose the short rate is rt, and the spread between the short rate and the target is st = rt − ft.

Consider a federal funds futures contract which for simplicity we assume pays off fT at some future

5Another approach, of course, would be to have a full economic model of optimal policy rather than a simple rule.
As we see empirically, such a rule is likely to be nonlinear as well.
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Figure 2: Federal Funds Rate and Taylor Rule. This figure plots the observed Federal Funds
Rate on a quarterly basis against the the rate prescribed by the simple Taylor rule (22).

FOMC meeting time T . The price of such a contract is given by:

Pt = EQ
t

[
exp

(
−
∫ T

t
rsds

)
fT

]
= EQ

t

[
exp

(
−
∫ T

t
rsds

)
G(β ·XT )

]
. (24)

This expectation is easily mapped to the generalized transform (6), with

f (α ·X) = 1 (25)

g (β ·X) = G(β ·XT ) (26)

3.3 Default Contagion

Next, we consider a model of correlated default that violates the doubly stochastic assumption in

that the default event of one firm affects the default probability of another firm beyond its own

default intensity. This model is an extension of the primary-secondary framework for counterparty

risk in Jarrow and Yu (2001).

Suppose two firms A, B are from the same industry. Firm A is a primary player in the industry,

while B is a secondary small firm. Let the default times of A and B be τA and τB. Under the doubly

stochastic assumption, conditional on the information in the driving filtration that determines the
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intensities λA and λB , τA and τB are independent.

Pr (τA > s|Ft) = Et

[
exp

(
−
∫ s

t
λA (Xu) du

)]
(27)

Pr (τB > s|Ft) = Et

[
exp

(
−
∫ s

t
λB (Xu) du

)]
(28)

However, imagine that the event of the primary firm’s default brings major impacts on the rest

of the firms in the industry, while the failure of the secondary firm has little effect on others. The

impact of A on B can be due to direct business ties that are more important to B than to A, a

form of counterparty risk in Jarrow and Yu (2001), or it could be due to A’s default changes the

perception of risk in other firms, as in Collin-Dufresne et al. (2002). In this case, τA remains solely

dependent on λA, while τB depends on λB and the status of A.

Pr (τB < s|Ft) = Pr (τB < s, τA > τB) + Pr (τB < s, τA < τB)

= Et

[∫ s

t
e−

∫ u
t µ(Xv)dvλB (Xu) du

]

+ Et

[∫ s

t
1{τA>u,τB>u}λA (Xu) · Pr (τB < s|Fu− , τA = u, τB > u) du

]
(29)

where

µ (X) = λA (X) + λB (X) .

Let λ+
B,t be the default intensity of B after A defaults. Then, the probability that B defaults

before s conditional on A defaulting at time u < s is:

Pr (τB < s|Fu− , τA = u, τB > u) = 1 −Eu

[
exp

(
−
∫ s

u
λ+

B (Xu) du

)]
.

Jarrow and Yu (2001) consider the following specification:

λ+
B,t = λB,t + c (30)

The restriction is that A’s default permanently increases the default intensity of B by a constant

amount, which can be relaxed in several ways. For example, we can assume that

λ+
B,t = λB,t + c(Xt) (31)

for some c which is affine in X. In this case, the second expectation in (29) can be computed in

closed form (up to a single integral) using the DPS transform.

Alternatively, we can directly assume that

Pr (τB < s|Fu− , τA = u, τB > u) = g (α (s− u) , β (s− u) ·Xu) . (32)
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where g satisfies the regularity conditions in Theorem 1 plus ∂g
∂s > 0. This specification is attractive

when one wants to capture particular empirical patterns of default rates over different horizons (e.g.

at the different phases of firm A’s bankruptcy process), or the dissipation of the initial impact from

A to B over time, which could be infeasible under (31). It could also provide a reduced-form solution

to the challenges in modeling the nonlinear dependence of default intensity on state variables found

in Duffie et al. (2007), which can become more prominent in a period of market distress following

a large firm’s default.

One possible choice for g is a logistic function, as used by Campbell et al. (2008):

g (X, t) =
1

1 + exp (−α(t) − β(t) ·X)
, (33)

where α(t) and β(t) satisfy

α′(t) + β′(t) ·X > 0.

The evaluation of (29) given (32) depends on whether X jumps at the default event of firm A,

which corresponds to the “no-jump” condition as discussed by Duffie et al. (1996). If X does not

jump, the second term in (29) is equal to:

Pr (τB < s, τA < τB) = Vt = Et

[∫ s

t
e−

∫ u
t µ(Xv)dvλA (Xu) g (α (s− u) , β (s− u) ·Xu) du

]
, (34)

for which the generalized transform readily applies. If X jumps at τA, then a correction term is

needed for (34) (see Proposition 1 of Duffie et al. (1996)):

Pr (τB < s, τA < τB) = Vt − Et [∆VτA
] , (35)

which again can computed with the generalized transform.

This simple model of contagion can also be used to capture jumps in default intensities and

default correlation across firms following major events, with λA being the arrival intensity of such

events.

3.4 GMM Estimation of Default Models

The need to compute unconditional and conditional moments of nonlinear functions arise in the

method of moments and GMM estimations. Consider a class of econometric models given by

Et [g (βXt+s; θ)] = 0, s > 0 (36)

After conditioning down, we have

E [g (βXt; θ)] = 0 (37)

The restriction is that the nonlinear moment g (·) depends on X only through βX. Such a setup has

the advantage of making the effects from different elements of X easy to interpret, but does lose the
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generality... If X follows the affine jump-diffusion in (), and g satisfies the regularity conditions in

Theorem 2.1, then we can compute the above moments using the generalized transform technique.

In addition, the framework allows for instruments

zt = f (αXt; θ) ,

such that

E [g (βXt; θ) f (αXt; θ)] = 0.

Next, we illustrate how to use the generalized transform analysis in a GMM estimaiton of a

logit model of default. Suppose the marginal probability of default between t and t + 1 follows a

logistic distribution (see, e.g., Campbell et al 2008)

Et [Yi,t+1] = Pr (t < τi ≤ t+ 1|Xi,t) =
1

1 + exp (−α− βXi,t)

where τi is the time of default for firm i, Yi,t+1 = 1 if default occurs between t and t + 1 and 0

otherwise, and Xi,t is a vector of explanatory variables which follow the affine diffusion process ().

The standard method to estimate the parameters of the logit model is through a logit regression.

However, suppose we want to jointly estimate the parameters for the stochastic process Xt and

{α, β} with GMM, then the moments we can use include:

1. the average one-year default probability:

E [Yi,t] = E

[
1

1 + exp (−α− βXi,t)

]
= µ̂Y =

1

T

T∑

t=1

∑Nt
i=1 Yi,t+1

Nt

2. the volatility in one-year default probability:

std [Yi,t] =

[

E

[(
1

1 + exp (−α− βXi,t)

)2
]

− E [Yi,t]
2

] 1
2

= σ̂Y =



 1

T

T∑

t=1

(∑Nt
i=1 Yi,t+1

Nt
− µ̂Y

)2




1
2

3. additional moments in X

4 Three Concrete Examples

In this section, we provide in-depth analysis of three example applications of the generalized trans-

form analysis.

4.1 Recovery Risk

The value of a credit-risky security (e.g. defaultable bonds or credit default swaps) depends on the

discount rate, default probability, and the recovery value of the security in the event of default.
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Recovery risk refers to the uncertainty about the recovery rate. Due to the great amount of difficulty

in forecasting the recovery rate far ahead of the default event, academics and practitioners have

often treated recovery risk as a secondary consideration. We introduce a new class of stochastic

recovery model and illustrate the impact of state-dependent recovery risks on pricing.

We fix a probability space (Ω,F , P ) and a filtration {Ft : t ≥ 0}. Following the reduced-form

models, the default time is assumed to be a totally inaccessible F-stopping time τ : Ω → (0,+∞].

For simplicity, we assume that τ is doubly-stochastic with intensity λt under the risk neutral

measure Q.6 Let the instantaneous riskfree rate be rt.

The price of a T year defaultable zero-coupon bond with face value of 1 and recovery at default

of ϕτ is:

V0 = EQ
[
e−

∫ τ
0 rudu1{τ≤T}ϕτ

]
+ EQ

[
e−

∫ T
0 rudu1{τ>T}

]

= EQ

[∫ T

0
e−

∫ t
0 (ru+λu)duλtϕtdt + e−

∫ T
0 (ru+λu)du

]
, (38)

the second equality follows from the doubly-stochastic assumption and certain regularity conditions

for r and λ (see Duffie (2005) for details).

Duffie and Singleton (1999) discuss three types of recovery modeling:

1. “recovery of treasury” (RT):

ϕt = (1 − Lt)Pt, (39)

where Pt is the price at time t of an otherwise equivalent default-free bond, Lt is a value

between 0 and 1.

2. “recovery of face value” (RFV):

ϕt = (1 − Lt)F, (40)

where F is the face value of the bond.

3. “recovery of market value” (RMV):

ϕt = (1 − Lt)Vt− , (41)

where Vt− is the market value of the security immediately before default.

Duffie and Singleton (1999) show that under the RMV specification and a suitable no-jump

condition,7 one can price defaultable claims with the default-adjusted discount rate, rt + λtLt.

Moreover, if one directly specifies the mean-loss rate λtLt as affine, the standard results for affine

term structure models apply. In contrast, the RT and RFV models are generally not analytically

tractable.
6See Duffie (2005) for a survey on the reduced form approach for modeling credit risk and the doubly-stochastic

property.
7See also Duffie et al. (1996) and Collin-Dufresne et al. (2004) for discussions on the no-jump condition.
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While analytically appealing, the RMV assumption also has some limitations. Since λt and Lt

enter the default-adjusted discount rate symmetrically, we cannot separately identify the effect of

default intensity and recovery using information on prices alone. Moreover, in some cases, e.g. when

pricing bonds of different seniorities from the same issuer (e.g. see Figure 1 of Duffie and Singleton

1999), it is more natural to model default intensity λ (same across different bonds) and recovery

rates L (depending on seniority). Finally, data on recovery rates are usually quoted as fraction of

face value instead of market value. For example, Moody’s database of corporate defaults estimates

defaulted debt recovery rates using the ratio of market bid prices observed roughly 30 days after

the date of default to par value.

Bakshi et al. (2006) study a class of RT and RFV models for which ϕ is exponential affine in

the default intensity. They solve for bond prices using the DPS transform. We show that a wide

range of RFV models is also tractable using the generalized transform analysis. The added flexility

in modeling recovery rates allows us to introduce explicit dependence of recovery rates on macro

and firm-specific variables.

4.1.1 Model Setup

We directly specify the dynamics of state variables under the risk neutral probability measure. The

default intensity λt of a firm follow a CIR process,

dλt = κλ(θλ − λt)dt+ σλ

√
λtdB

λ
t . (42)

The second state variable, Yt, follows

dYt = κY (θY − Yt)dt + σY

√
λtdB

Y
t . (43)

The short term interest rate, rt, is given by

rt = Yt − δλt. (44)

This setup captures the negative correlation between rt and λt as documented by Duffee (1998).

The recovery function ϕ can depend on the default intensity, short rate, and other macro and

firm-specific variables. For example, Altman et al. (2005) document significant negative correlation

between aggregate default rates and recovery rates.8 Chen (2008) shows that macro variables such

as GDP growth and riskfree rate are correlated with the aggregate recovery rates and default rates.

Zhang (2009) shows that stricter covenants in recessions lead to a negative dependence of recovery

rates on lagged macroeconomic conditions. Carey and Gordy (2007) show that firm-level recovery

rate increases with the share of bank loans in total debt.

Another important property for the recovery function ϕ is that it should only take values

8See Altman et al. (2005) for a review of earlier studies on the relationship between recovery rates and default
rates.
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from [0, 1]. One specification for ϕ that satisfies this requirement and still works with the DPS

formulation is ϕ (X) = eβ·X1{β·X>0} + 1{β·X<0}. Bakshi et al. (2006) study such a setting. More

generally, the cumulative distribution function of any distribution will have this property. CDF

functions also have the additional benefit in that they have nice Fourier transform properties.9

Some of the common choices in empirical studies include:

• Logit Model:

ϕ (X) =
1

1 + e−β0−β1·X

• Probit Model:

ϕ (X) =

∫ β0+β1·X

−∞

1√
2π
e−

s2

2 ds.

• Cauchy Model:

ϕ (X) =

∫ β0+β1·X

−∞

γ

π((s2 − s20) + γ2)
ds.

The Probit and Cauchy model also have the convenient feature that the integrands have a closed-

form Fourier transform.

For simplicity, we assume that ϕ only depends on the default intensity, and we adopt a small

variation of the Cauchy model:

ϕ(λ) =
a

1 + b(λ− λ0)2
+ c. (45)

Re-writing as in the cauchy density:

ϕ(λ) =
aπ√
b

1

(πb−1/2)(1 + (λ− λ0)2/(b−1/2)2
. (46)

Its Fourier transform is:

ϕ̂(t) =
aπ√
b
e
λ0it− 1√

b
|t|

(47)

We consider two calibrations of ϕ(λ) in (45). First, using data from Altman et al. (2005),

we calibrate a = 0.5, b = 1415, c = 0.25, and λ0 = −0.01. The fitted function is “model I” in

Figure 3. The fitted curve is downward sloping and convex. The recovery rate is close to 70%

when the probability of default is very low. When annual default probability rises to 10%, the

recovery rate drops to 30%. The parametrization of model I is likely too conservative: the recovery

rate is bounded from below at 25%, and it treats the recovery rates in the data the same as risk-

neutral recovery rates. Thus, we also study a second calibration, where a = 0.8, b = 800, c = 0,

and λ0 = −0.08. The fitted function is “model II” in Figure 3, which has similar recovery rates

to “model I” when default intensity is low, but has lower recovery than “model I” when default

intensity rises.

9For example, f̂ ′(t) = tf̂(t) so differentiation and integration is easy on the fourier side by just multiply/divide
by t. So if we want to go from PDF to CDF, on fourier side, we just divide by t.
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Figure 3: A Cauchy Model of Aggregate Recovery Rates. This figure plots the aggregate
recovery rates and default rates from Altman et al. (2005). The blue line fits a Cauchy curve
through the data. The functional form of the curve is given by equation (45).

Several features of the recovery curve will matter for bond pricing: how fast (slope) and how

far (right tail) the recovery rate drops with default rate, and how much curvature the recovery

function has. We will investigate how each of these features affect pricing.

The key step in computing the value of a defaultable zero-coupon bond is to compute the

expectation

EQ
0

[
exp

(
−
∫ t

0
(ru + λu)du

)
λtϕ (λt)

]
,

which can be easily mapped into the generalized transform (6),

f (α ·X) = ι2 ·X (48)

g (β ·X) =
a

1 + b(ι2 ·X − λ0)2
+ c (49)

It is straightforward to use the recovery model ϕ(X) to price other credit products, such as credit

default swaps or recovery locks. In addition, our model can be generalized to allow for violations

of the doubly-stochastic assumption or no-jump conditions.10 Thus, it still works in models with

flight-to-quality, default contagion, systematic jump risk, or other features that violate the no-jump

condition.

10We can either explicitly make the correction for jumps as in Duffie et al. (1996), or use the change-of-measure
method in Collin-Dufresne et al. (2004).
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Table 1: Model Calibration

κλ θλ σλ κY θY σY δ
0.1 0.06 0.01 0.02 0.12 0.015 0.1

4.1.2 Results

We use the dynamics of default intensity λ and riskfree rate r implied by (42-44) and the recovery

model (45) to price 10-year defaultable zero-coupon bonds. The parameter values for the λ and Y

process are reported in Table 1.

The results of the model are reported in Figures 4. Panel A of Figures 4 plots the credit spreads

(the yield spreads between the defaultable bond and default-free bond with same maturity) as

functions of the default intensity. We report the results for (1) the stochastic recovery model I; (2)

constant recovery with ϕ set to the unconditional mean recovery rate implied by model I, which

is 31%; (3) constant recovery with ϕ = 25%, a popular assumption for the recovery rate in both

academic analysis and industry practice (see, e.g. Pan and Singleton 2008).

Panel B reports the fraction of the spreads due to recovery risk, defined as

stochastic recovery yield − constant recovery yield

stochastic recovery yield − default-free yield
,

which can be interpreted as a measure of the relative pricing errors due to ignoring the state-

dependence of recovery rates.

Naturally, credit spreads increase with default intensity in all cases. When current default

intensity is low, the stochastic recovery model implies higher-than-average recovery rates. As a

result, constant recovery model generates higher credit spreads. As default intensity rises, the

spreads from the stochastic recovery model become higher, and exceeds the spreads from the

constant recovery model with ϕ set to model-implied average recovery rate. Since the lower bound

for the stochastic recovery model model is 25%, the spreads of the stochastic recovery model is

always below that of the constant recovery model with ϕ = 25%.

In terms of the relative pricing errors, relative to stochastic recovery model I, the main concern

of the constant recovery assumption is underpricing, i.e. generating credit spreads that are too high.

The pricing errors can be large. When default intensity is low (< 2%), the pricing errors are close

to 40% for the assumption of 25% recovery rate.

In Panel C and D of Figures 4, we compare the pricing results of the stochastic recovery model

II with the constant recovery models. Again, when default intensity is low, credit spreads are lower

for the stochastic recovery model, because the conditional recovery rates are higher than under

constant recovery assumption. As default intensity increases, the low recovery rate at times of high

default probability starts to have more and more significant effects on the bond prices. The spreads

rise more rapidly in model II than in model I (Panel A) due to the more rapid decline in recovery

rates, and they exceed the spreads from the constant recovery models quickly.
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Figure 4: Credit spreads for 10-year bonds with constant recovery and Cauchy recovery.

This figure plots the credit spreads for 10-year zero-coupon defaultable bonds. The stochastic recovery model

in Panel A and B are based on recovery model I, Panel C and D based on recovery model II. For constant

recovery, “ϕ = mean” sets the recovery rate to the unconditional mean of the stochastic recovery model,

which is 31% for model I, 16% for model II.

The relative pricing errors in Panel D are quite large either when default intensity is low or high.

For example, under the 25% constant recovery rate assumption, the spreads are 30%+ higher than

the stochastic recovery model for λ < 1%, and 18%+ lower than the stochastic recovery model for

λ > 6%. Moreover, simply adjusting the constant recovery rate does not solve the problem since it

will either exacerbate the underpricing for low λ or overpricing for high λ. These results suggest

that the negative correlation between default intensity and recovery rate can have important impact

for pricing high grade bonds as well as high yield bonds.

Finally, we use the Monte Carlo method to check the accuracy of our solutions. The results

are reported in Figure 5. The yields computed from the Monte Carlo method (using 50,000 simu-

lations) are consistent with the spreads computed using the generalized transform. The remaining

differences are due to the numerical errors of the simulations.
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Figure 5: Zero coupon yields from generalized transform vs. Monte Carlo method.This
figure plots zero coupon yields for 10-year bonds with stochastic recovery and constant recovery,
compared to prices obtained using Monte Carlo method.

4.2 Two Non-IID trees

In this section we illustrate how to use the generalized transform to compute the equilibrium of

asset pricing models. Cochrane et al. (2008) show that in a Lucas economy (Lucas (1978)) with

two trees, the equilibrium conditions imply rich dynamics for stock returns and volatility in the

time series and cross section. They provide closed-form solutions in the case of log utility and

i.i.d. trees. Martin (2008) extends the analysis to multiple trees and power utility, but also assume

that dividend growth of each tree is i.i.d. We show that the model can be extended to allow for

mean reversion, conditional heteroscedasticity, and jumps with time-varying intensity in dividend

growth.

4.2.1 The Model

Following Cochrane et al. (2008) and Martin (2008), we consider an endowment economy with two

stocks (trees). The infinitely-lived representative investor has CRRA utility:

Ut = Et

[∫ ∞

0
e−ρuC

1−γ
t+u − 1

1 − γ
du

]
, (50)

where we focus on the case γ > 1.
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There are two stocks with dividend streams D1,tdt and D2,tdt. Our model deviates from

Cochrane et al. (2008) and Martin (2008) in that the dividend growth is non-i.i.d. The log dividends

d1,t = logD1,t and d2,t = logD2,t follow the processes:

ddi,t = gi,tdt+ σd,idZ
d
i,t (51)

dgi,t = κi (gi − gi,t) dt+ σg,idZ
g
i,t (52)

where gi,t is the expected growth rate for di,t, which follows an Ornstein-Uhlenbeck process with

long term mean gi. For simplicity, we assume that all the Brownian motions Zd
i,t and Zg

i,t are

uncorrelated with each other. When γ = 1 and gi,t ≡ gi, we recover the model of Cochrane et al.

(2008). When γ > 1 and gi,t ≡ gi, we recover the two-tree model of Martin (2008).

In equilibrium, aggregate consumption Ct = D1,t +D2,t. Define the dividend share for the first

stock as St = D1t/(D1t + D2t). As in the Lucas economy with a single asset, the instantaneous

riskfree rate in this economy is determined by the rate of time preference, the expected growth rate

of consumption, and precautionary savings driven by consumption volatility:

rf,t = ρ+ γ
(
St(g1,t + σ2

d,1/2) + (1 − St)(g2,t + σ2
d,2/2)

)
− γ(γ + 1)

2

(
S2

t σ
2
d,1 + (1 − St)

2σ2
d,2

)
. (53)

Under the standard regularity conditions, the price of stock i (i = 1, 2), Pi,t, is given by:

Pi,t = Et

[∫ ∞

0
e−ρuuc (Ct+u)

uc (Ct)
Di,t+udu

]

= Et

[∫ ∞

0
e−ρu (D1,t +D2,t)

γDi,t+u

(D1,t+u +D2,t+u)γ
du

]

= (D1,t +D2,t)
γ

∫ ∞

0
e−ρuEt

[
Di,t+u

(D1,t+u +D2,t+u)γ

]
du. (54)

To map the expectation in (54) to the generalized transform formula, we first define the state

variable Xt = (d1t, µ1t, d2t, µ2t). The model (51)-(52) implies that X follows an affine diffusion

process,

dXt = (K0 +K1Xt) dt+
√
H0 dZt, (55)

where

K0 =





0

κ1ḡ1

0

κ2ḡ2




, K1 =





0 1 0 0

0 −κ1 0 0

0 0 0 1

0 0 0 −κ2




, H0 =





σ2
d,1 0 0 0

0 σ2
g,1 0 0

0 0 σ2
d,2 0

0 0 0 σ2
g,2





Zt =
[
Zd

1,t Z
g
1,t Z

d
2,tZ

g
2,t

]′
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Next, from (54),

Et

[
D1,s

(D1,s +D2,s)γ

]
= Et



 e
(1−γ/2)d1,s−γ/2d2,s

(
2 cosh

d1,s−d2,s

2

)γ



 = Et [f (α ·Xs) g (β ·Xs)] , (56)

where

f (x) = ex (57)

g (x) =
1

(2 cosh(x))γ (58)

and

α =
[
1 − γ

2
0 − γ

2
0
]T
, β =

[
1

2
0 − 1

2
0

]T

.

Up to this point, our procedure is the same as in Martin (2008). When the increments of X

are i.i.d., the conditional characteristic function for X is known explicitly, which Martin uses to

compute (56) following a Fourier transform for g. We generalizes his method to the case where the

increments of X are non-i.i.d. by exploiting the properties of the conditional characteristic function

for general affine processes.

This model can be further extended in several dimensions. First, while here we only consider

time-varying expected growth rates, X can be any affine process, which allows us to introduce

stochastic volatility and jumps with time-varying intensity in consumption growth. One attractive

feature of our approach is that these new elements do not increase the dimension of the Fourier

transform, which maintains the tractability of the model. Second, we can generalize the utility

function, e.g., by making aggregate consumption Ct a CES aggregator of D1,t and D2,t, as in Pi-

azzesi et al. (2007), where the two trees are interpreted as nonhousing consumption and housing

services. We can also impose cointegration between the two dividend process and allow for stochas-

tic volatility, as do Piazzesi et al. (2007). Third, it is also convenient to add preference shocks

that are pl-linear in the state variable. Finally, the model can allow for multiple trees using the

multi-dimensional version of the generalized transform in Proposition 2.

4.2.2 Price-Dividend Ratios and Expected Excess Returns

To illustrate the quantitative implications of the model, we choose the following parameters. For

preferences, ρ = 0.1 and γ = 10. For the two dividend processes, we assume that the first stock

initially has smaller dividend than the second stock, D1,t = 1/5D2,t, but has higher growth rate in

the long run, ḡ1 = 0.03 > ḡ2 = 0.01. The other parameters are the same for the two stocks: the

speed of mean reversion for the growth rate κ1 = κ2 = 0.3, volatility of dividend σd
1 = σd

2 = 0.1, and

volatility of dividend growth σg
1 = σg

2 = 0.01. A possible interpretation for this parametrization

is that a young, fast-growing industry is slowly taking over the economy from an established,

slow-growing industry.
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Figure 6: Price-dividend ratios and expected excess returns. This figures plots the price-
dividend ratios and expected excess returns of the two stocks (D1t/D2t = 1/5) as a function of their
own dividend growth rate and the other stock’s growth rate.

The top two panels of Figure 6 plot the price-dividend ratios for the two stocks against the

conditional expected growth rates of the two stocks. The price-dividend ratio the first stock is

higher than the second, and it is decreasing in the expected growth rate of both stocks, g1,t and

g2,t, although the decline is faster with g2,t. A rise in the expected growth rate has two effects

on the price-dividend ratio of the stock. There is a cash-flow effect : higher expected growth rate

implies higher future cash flows, which tends to increase the price-dividend ratio. There is also a

discount rate effect : a rise in the expected growth rate will increase the discount rate for stocks due

to the “substitution effects”: when the expected future consumption is high, consumers want to

borrow to increase consumption today, which raises the interest rate (see equation (53)). With the

CRRA utility and the given parameters, the discount rate effect dominates, causing price-dividend

ratio to decrease with the growth rates.

Due to the large size of the second stock, an increase in g2,t has a strong effect on the aggregate

discount rate, which causes the price of the first stock to drop. This effect is stronger when g1,t is

small. In contrast, changes in g1,t have a small effect on the discount rates, but it has the additional
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cash flow effect on the small stock. As the share of the first stock gets smaller in this economy,

the cash flow effect eventually dominates, resulting in the price-dividend ratio P1,t/D1,t increasing

in g1,t. As for the large stock, when g2,t is large, changes in g1,t have almost no effect on the

price-dividend ratio P2,t/D2,t. But when g2,t is small, the effect of g1,t on the price of the larger

stock can become sizable.

In order to analyze the expected excess returns, we consider a stock as a portfolio of zero-

coupon equities. The risk premium of the stock is then the value-weighted average of the risk

premium for these zero-coupon equities, which are easy to compute. In general, the instantaneous

expected excess return for any asset is determined by its exposure to the primitive risk sources,

Xt = (d1t, g1t, d2t, g2t), and the risk premia that these risks demand through their covariance with

the pricing kernel. In this case, the pricing kernel, Mt, takes the form Mt = e−ρt(D1,t +D2,t)
γ . By

Îto’s Lemma, the expected excess returns for any asset with state-dependent price Pt = P (Xt, t)

are then given by

ERt =
1

P

EP [dP ]

dt
− rt

=
1

P
∇XP (Xt) ·H0∇XM(X, t)/M(X, t)

=
1

P

∂P

∂d1
γStσ

2
d,1 +

1

P

∂P

∂d2
γ(1 − St)σ

2
d,2, (59)

where M(X, t) = e−ρt(eX1 + eX3)γ is the stochastic discount factor and St = D1t/(D1t + D2t) is

the dividend share. Since the innovations in dividends and growth rates are uncorrelated, there

is no premium for growth risk in this model. Notice that the risk premium of a stock does not

necessarily go to zero when its share approaches 0. Even though the stock’s own dividend shocks

become uncorrelated with the pricing kernel as its share drops to 0, the stock can still be exposed

to discount rate rate risks. For example, a shock to the second stock’s dividend will change the

share and the diversification in the economy, which affect the discount rates, and in turn, the price

of the first stock.

Since the price of zero coupon equity is available in closed form through the transform analysis,

its gradient can also be computed in closed form. Then we can compute the risk premium for zero

coupon equities at different maturities using (59), and compute the risk premium for the stock as

a weighted average of the premia for zero coupon equities. The results are plotted in the bottom

panels of Figure 6. Because the second stock is larger and thus more correlated with the pricing

kernel, it demands higher risk premium on average. Interestingly, the conditional risk premia of

both stocks are decreasing in the growth rate of the larger stock g2,t, but increasing in the growth

rate of the smaller stock g1,t.

Equation (59) implies that the expected growth rates of dividend only affect the risk premia by

changing the sensitivity of the log stock price to dividend shocks. A positive shock to d1,t increases

expected future dividends for the first stock, which tends to raise its stock price, and moves the

share St closer to 0.5, which increases the interest rate and lowers the stock price. A positive shock
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to d2,t has no impact on future dividends of the first stock, but moves the share St closer to 0, which

decreases the interest rate and raises the stock prices. The net risk premium of the smaller stock

is more affected by the exposure to the dividend shock of the larger stock, resulting in positive risk

premium. A higher g1,t will amplify the effects of both dividend shocks on the interest rates, but

since the second dividend shock bears a higher premium, the net risk premium increases in g1,t. A

higher g2,t reduces the effects of both dividend shocks on the interest rates and prices, which causes

the risk premium to drop.

4.3 Differences of Opinions

One is often interested in economies where there is heterogeneity amongst agents in terms of beliefs,

or equivalently of preferences. These differences generate trade and affect asset prices in equilib-

rium. In studying such economies, aggregation often lead to difficulty in computing equilibrium

outcomes. In this example, we illustrate the use of our main result in solving economies where there

is heterogeneity among agents regarding beliefs (and higher order beliefs) about fundamentals.

Suppose that there are heterogeneous agents (i = 1, 2 for simplicity) which possess heteroge-

neous beliefs. There is a state variable Xt which Agent 1 believes follows an affine jump diffusion:

dXt = µ1
tdt+ σ1

t dB
1
t + dZ1

t (60)

where µ1
t = K1

0 +K1
1Xt, σ

1
t (σ

1
t )

⊤ = H1
0 +H1

1 ·Xt and jumps are believed to arrive with intensity

λ1
t = λ1

0 +λ1
1 ·Xt and have distribution ν1 (with moment generating function φ1). As elaborated in

the examples below, the variable Xt is meant to encompass all uncertainty in the economy including

any time-variation in the heterogeneity of beliefs. For simplicity, we suppose that Agent 1’s beliefs

are correct.

Agent 2 has heterogeneous beliefs which we shall suppose are equivalent. A broad class11 of

such equivalent beliefs can be characterized as follows. There exists some vector a such that Agent

2 believes X follows an affine jump diffiusion satisfying

1. µ2 = µ1 + σ1(σ1)⊤a

2. σ2 = σ1

3. dν2/dν1(Z) = ea·Z/Eν1 [ea·Z ] or φ2(c) = φ1(c+ a)/φ1(a)

4. λ2 = λ1 × Eν1[ea·Z ]

This difference in beliefs generates a disagreement about not only the drifts of the state variables,

but also the jump frequency and the distribution of jump size.

11More generally, we could consider beliefs of the form eh(xt)−
∫

t

0
D1h(xs)ds. Provided the integral term remains

tractable, the same analysis applies.
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This structure implies that the two beliefs define equivalent probability measures which may be

related through the Radon-Nikodym derivative dP 2/dP 1

ηt = Et[
dP 2

dP 1
].

= ea·Xt−
∫ t
0

a·µ1
s+ 1

2
‖σ1

sa‖2+λ1
s(φν(a)−1)ds (61)

The variable ηt expresses Agents 2’s differences in opinion in that when ηt is high, Agent 2 believes

an event is more likely than Agent 1 believes. To distinguish from the risk neutral measure, we

refer to the ηt defining the difference in beliefs the db-density process.

Suppose now that the agents have time separable utility:

Ui(c) = E0[

∫ ∞

0
u(ct, t)dt] (62)

Suppose also that (1) markets are complete, (2) log of aggregate consumption, ct, is linear in Xt

(say, ct = c · Xt), (3) agents are endowed with some fixed fraction (θ1, θ2 = 1 − θ1) of aggregate

consumption. As in Dumas et al. (2009), hereafter DKU, we can solve for equilibrium prices. Let

ξt denote the density process Et[dQ/dP
1], where Q is the risk-neutral measure. As in ?, we can

set the lifetime budget constraint and equate state prices to marginal utilities to solve

U ′
t(c

1
t ) = λ1ξt , (63)

U ′
t(c

2
t ) = ηtλ

2ξt . (64)

Market clearing then implies

ct = U−1
t (λ1ξt) + U−1

t (λ2ηtξt) (65)

where cit is Agent i’s equilibrium consumption at time t, λi is the shadow price of an additional util

for Agent i. This gives a nonlinear equation for ηt, so that in general ξt = h(ct, ηt), where h solves

the associated inverse problem.

With the additional assumption that Ut(c) = e−ρtc1−γ/(1 − γ), this simplifies to

U ′
t(c) = e−ρtc−γ (66)

c1t = (eρtλ1ξt)
−1/γ (67)

c2t = (eρtλ1ξt/ηt)
−1/γ (68)

ξt = e−ρt
[( ηt

λ1

)1/γ
+
( 1

λ2

)1/γ]γ
c−γ
t (69)
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Using g(x) =
[(

x
λ1

)1/γ
+
(

1
λ2

)1/γ]γ
and writing ct = ec·Xt we have

ξt = e−ρtg(a ·Xt)e
c·Xt (70)

Thus with the risk neutral density in this form we may price any asset with pl-linear payoff,

such as bonds and dividend claims, using Theorem 1.12

We now provide a number of examples showing that this framework can accommodate a wide

range of specifications with heterogeneity of beliefs regarding expected changes in fundamentals,

likelihood of jumps, distribution of jumps, and divergence in higher order beliefs.

1. Disagreement about Stochastic Growth Rates. This is the example studied in DKU.

We now show how this framework corresponds to that of DKU. As we elaborate on later,

our main results substantially simplify the calculations for the most general model that they

consider. In their model, there is a single dividend tree with time-varying growth rate, but

heterogeneous agents with differing beliefs regarding the growth rate of the tree. Their model

can be mapped into our setting by using the state variable Xt = 〈log δt, log ηt, f̂
B
t , ĝt, ĝ

2
t 〉,

where δt represents dividends, ηt denotes what they call sentiment, f̂B
t represents beliefs

about the growth rate of dividends for group B of agents and ĝt represents differences in

opinions about the growth rate of dividends among the heterogenous agents. The dynamics

of Xt are given by the stochastic differential equation:

dXt = (K0 +K1Xt)dt + ΣtdB
B
t

where

K0 =





−1
2σ

2
s

− ĝ2
t

σ2
δ

ζf̄

0

σ2
ĝ,δ + σ2

ĝ,s





, K1 =





0 0 1 0 0

0 0 0 −1/σδ 0

0 0 −ζ 0 0

0 0 0 −ψ 0

0 0 0 0 −2ψ




, Σt =





σδ 0

−ĝt/σδ 0

γB/σδ 0

σĝ,δ σĝ,s

2ĝσĝ,s 2ĝσĝ,s




.

It is easy to see that the local conditional variance ofXt, ΣtΣ
⊤
t , is affine inXt so this represents

an affine process.13

12The function g is not bounded and in fact does not even define a tempered function. Thus, our theory does not
directly apply. One option is to write g(x) = g−(x)e−x + g+(x)e+x where g±(x) = g(x)1{±x<0}e

∓x. Here g± are
bounded functions whose Fourier transforms can be computed in terms of incomplete Beta functions. Another option
is to write g(x) = g(x)⌈γ⌉/γg(x)−⌈γ⌉/γ+1. In this case, the first functional is pl-linear and the second is bounded with
Fourier transform known in terms of Beta functions.

13DKU exploit the fact that in this particular case the ODE determining the conditional characteristic function for
some variables can be computed in closed form by standard methods. However, in general there is little additional
complication to solve the usual ODE by standard numerical methods.
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The variable ηt who they refer to as sentiment also gives the density process: ηt = Et[dP
A/dPB ].

It is immediate that ηt takes the form of (61) with a = 〈0, 1, 0, 0, 0〉.

DKU show that in their setting a number of equity and fixed income security prices take

the form E0[e
α·Xtg(β ·Xt)] where g(x) = (1 − eax)b for some (α, β, a, b). In the main text of

their paper, they consider the case where b ∈ N so that the nonlinearities in g can simply be

expanded into a sum of exponential terms thereby reducing to log-linear functionals. In this

case, prices can be computed by well-known methods. For more general cases, they derive

expressions in their appendix. We now show how our method simplifies the dimensionality of

their analysis for the nonlinear case.

The formula they present in (A58-A61) is (essentially)

E0[e
α·Xtg(β ·Xt)] =

1

2π

∫

b∈R

g(b)

∫

s∈R

eibsE0[e
(α−isβ)·Xt ]ds db. (71)

This gives an alternative expression, a double integral, for the expectations that we compute

using a single integral. Equation (71) can be derived by a (more-or-less) direct application

of the results in DPS. However, as noted, this formula increases the dimensionality of the

problem. Theorem 1 shows that such nonlinearities need not increase the dimensionality of

the problem.14

2. Disagreement about Volatility Risk. Say that dividends have stochastic volatility:

Xt = [ct, Vt]
⊤ (72)

dXt =

[
ḡ

−κV Vt

]

dt +

√√√√
[
σd 0

0 0

]

+

[
σcV Vt 0

0 σV V Vt

]

dB1
t (73)

Here σ2
d is the lowest conditional variance of log dividends, while Vt represents the degree to

which volatility is above the lowest level.

Agent 2 disagrees about the dynamics of volatility. According to their beliefs:

dXt =

[
ḡ

−(κV − γ)Vt

]

dt +

√√√√
[
σd 0

0 0

]

+

[
σcV Vt 0

0 σV V Vt

]

dB2
t (74)

Thus when γ > 0, these agents believe that volatility mean reverts more slowly. Using

a = 〈0, γ/σ2
V V 〉 gives the approach change of measure from Equation (61). In this case,

〈Xt, It〉 follows a 3-dimensional affine process.

3. Disagreement about Momentum. Suppose that there is stochastic growth in consump-

14Indeed for the generalization g(β1 · Xt, β2 ·Xt) the trade-off is a somewhat tractable 2-dimensional integral with
our method versus a highly intractable 4-dimensional integral by using a direct extension of the DPS method.
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tion.




ct

gt

et



 =




gt

κ(ḡ − gt)

gt − ret



+




σc 0

0 σg

0 0



 dB1
t (75)

In this case, et is an exponential weighted moving average of past growth:

et =

∫ t

−∞
e−rsgt−sds (76)

Suppose now that Agent 2 believes




ct

gt

et



 =




gt + cet

κ(ḡ2 − gt)

gt − ret



+




σc 0

0 σg

0 0



 dB2
t (77)

In this case, Agent 2 believes that growth is due to two components (1) a mean-reverting

component, gt and (2) a counteracting momentum component through et. Fixing the past, for

large enough deviations from the steady-state, the mean-reverting component will dominate.

However, for small deviation from the steady state, Agent 2 will believe that past deviations

from the steady state lead to larger future deviations from the state steady. In this way we

can very Agent 2 as possessing a conservatism or “law of small numbers” bias.

In this case, the difference in beliefs cannot be directly expressed as in ( 61) directly. However,

by considering an augmented state variable we can return to the form of (61). To see this,

let X̂t = 〈Xt, vech(Xt)〉. It is easily verified that X̂t is an affine process and that

d(ctet) = µce
t dt + [σcet, 0]dB1

t (78)

Thus a difference in belief regarding X̂ which satisfies (61) so that the coordinate of a corre-

sponding to ctet non-zero with the rest of the entries zero will satisfy (75) and (77). Similarly,

the integral term in (61) has affine drift in X̂t. Such techniques are common in the term struc-

ture literature with respect to quadratic term structure models. The procedure generalizes

to accommodate such an “essentially affine” difference of beliefs (see Duffee (2002)).

4. Disagreement about Higher order Beliefs. Within this setting, we see that heteroge-

neous beliefs affect asset prices. Similarly, heterogeneity in higher order beliefs can affect
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asset prices as well. We can inductively proceed in defining beliefs:

ĝi
t = Agent i’s beliefs about the growth rate of consumption

ĝij
t = Agent i’s beliefs about Agent j’s belief about the growth rate of consumption

We can consider the state variable Xt = [ct, ĝ
1
t , ĝ

2
t , ĝ

12
t , ĝ

21
t ]. Let us suppose that Xt follows a

Gaussian process under both agents beliefs. Consistency requires that the drift of ĝ2
t under

Agent 1’s beliefs be ĝ21
t . Similarly, we have a consistency requirement for Agent 2. For

example, we may suppose that Agent 1’s beliefs are such that

dXt =





ĝ1
t

κ1(θ − ĝ1)

ĝ12
t

κ11(ĝ
2 − ĝ12)

κ12(ĝ
1 − ĝ21)




+ ΣdB1

t (79)

Here, the fourth and fifth components of the drift say that Agent 1 believes that the higher

order beliefs (both his beliefs about Agent 2 and Agent 2’s beliefs about him) are correct in

the long run, but may have short run deviations.

dXt =





ĝ2
t

ĝ21
t

κ2(θ2 − ĝ2)

κ21(ĝ
2 − ĝ12)

κ22(ĝ
1 − ĝ21)




+ ΣdB2

t (80)

Again, Agent 2 believes that the higher order beliefs converge to the correct beliefs in the

long run, but perhaps at a slower rate than Agent 1 believes.

As in the Disagreement About Momentum example, we must extend the state variable to

include the cross-product of the state-variables in order to fit into the form of (61).

5. Disagreement about Disasters. Suppose that log consumption, ct, has constant growth

with IID innovations with time-varying probability, λt, of rare disaster. Let Xt = [ct, λt]

dXt =

[
ḡ

−κλλt

]

dt+

[
σc 0

0 σλ

√
λ

]

dB1
t + dJ1

t (81)

where Jt are jumps in ct which occur with intensity λ0 + λt and distribution ν. Suppose that

Agent 2’s beliefs are specifed by the db-density of form (61) with a = 〈c, 0〉. Agent 2’s beliefs
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Figure 7: Price-Dividend Ratios with Heterogeneity in Beliefs.These figures plots the Price-
Dividend ratio in an economy where agents hold different beliefs regarding growth rates and disaster
probabilities.

will follow from

dXt =

[
ḡ + σ2

ca

−κλλt

]

dt +

[
σc 0

0 σλ

√
λ

]

dB2
t + dJ2

t (82)

where jumps arrive with intensity λ2
t = Eν1 [ea·Z ](λ0 + λt) and have distribution ν2 with

Radon-Nikodym derivative dν2/dν1(Z) = ea·Z/Eν1 [ea·Z ].

In this sense, Agent 2 is more optimistic about the future growth both in terms of (1) expected

growth rates, (2) lower likelihood of disasters, (3) less severe losses conditional on there being

a disaster.

For illustration, we consider the disagreement about disasters in Example 5. The model is

calibrated as follows:

• ḡ = 3%, σc = 2%, κλ = .1, θλ = 1.5%, σ∞λ = 1%, (the volatility of the stationary distribution

of λ), γ = 2. Jumps are always a 7.5% drop in consumption.

• Agent 2’s beliefs are generated with a = 〈a1, 0〉 where a1 is chosen so that the agent is more

pessimistic (both with regard to growth rates and the likelihood of disasters). The believed

growth rate is g2 when a = (g2 − ḡ)/σ2
c .

• Each agent has fixed endowment of θ1 = θ2 = 1
2 . This is achieved by adjusting the Lagrange

multipliers for the shadow utility of an additional unit of consumption.

Note that this difference in beliefs implies the difference in jump intensity to vary by the

multiplicative factor e(g2−g1)/σ2
c j where j is the jump size. For example, when g1 = 2.4%, this
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factor corresponds to 3.08, meaning the second agent believes that disasters are three times more

likely than the optimistic agent.

Figure 7 plots the price-dividend ratio of the asset that pays the consumption claim as dividend.

The wealth fraction is maintained at θ1 = 1
2 . For small disagreement, the heterogeneous economy

lies between the single agent economies. For extreme disagreement, the price becomes depressed

below that found in either single agent economy. Notice that we see the characteristic increase in

the P/D ratio as the single agent economy grows more slowly due to lower consumption dividends

being offset by even lower discount rates.

5 Concluding Remarks

We extend the transform analysis in Duffie et al. (2000) to compute a general class of nonlinear

moments for affine jump diffusions, which has a wide range of applications in economics and finance.

We illustrate the power of this method with examples from several areas including option pricing,

term structure, credit risk modeling, and GMM estimations. We also illustrate the application of

the generalized transform method in three in-depth examples: a model of defaultable bond with

recovery risk; an equilibrium model of a Lucas economy with non-i.i.d. trees; and a general class of

difference-of-opinion models.
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A Proofs

A.1 Proof of Theorem 1

Throughout, we maintain the following assumptions:

Assumption 1: In the terminology of DPS, (Θ, α, β) is well-behaved at (s, T ) for all s ∈ R

(see their Definition 1.)

Assumption 2: The probability measure F defined by its Radon-Nikodym derivative,

dF

dP
=

e−
∫ T
0 rτ dτeα·XT

E0[e
−
∫ T
0 rτ dτeα·XT ]

, (83)

is such that the density of β ·XT under F is a Schwartz function. In particular, the density

of β ·XT is smooth and declines faster than any polynomial under F .

Proposition 1 of DPS gives conditions under which Assumption 1 holds. These are integrability

conditions which imply that, for every s, the local martingale Et[e
−
∫ T
t

rτ dτ+α+isβ]e−AT−t−BT−t·Xt

is a fact a martingale. (Recall, A,B are solutions to an ODE/BVP given in (8 – 9).)

Assumption 2 is analogous to to (2.11) of DPS. However, we require a somewhat stronger

assumption to directly apply our theory. This assumption can typically be shown to hold by

verifying that the moment generating function (under F ) is finite in a neighborhood of 0.

We now prove Theorem 1. Suppose now that Assumptions 1 and 2 hold. Then,

H = E0[e
−
∫ T
0

rτdτeα·XT g(β ·XT )]

= F0E
F
0 [g(β ·XT )]

= F0

∫
g(b)fF

β·XT
(b)db

= F0 〈g, fF
β·XT

〉.

In the last equation, we interpret g ∈ S ′. By Assumption 2, fF
β·XT

∈ S, and so f̂F
β·XT

∈ S also.

Thus Fourier inversion holds and (f̂F
β·XT

)̌ = fF
β·XT

(see Corollary 8.28 in Folland (1984).) Applying

this,

H = F0 〈g, (f̂F
β·XT

)̌〉
= F0 〈ĝ, f̌F

β·XT
〉

= 〈ĝ, F0f̌
F
β·XT

〉

= 〈ĝ, 1

2π
G(α− ·βi)〉.

The second step holds by the definition of the Fourier transform of a tempered distribution and

the last step hold by Assumption 1. This is the desired result.
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A.2 Proof of Proposition 1

(To be completed)

A.3 Proof of Proposition 2

(To be completed)

B Computations

We wish to compute expectations of the form E0[f(Xt)g(α · Xt)]. Here f will be pl-linear, for

example f(x) = ea·Xt(b+ c ·Xt). g is a general function defined on the real line.

In the case of defaultable bonds,

E0[f(Xt)g(β ·Xt)] =
1

2π
E0[f(Xt)

∫

s∈R

ĝ(s)eisβ·Xtds]

=
1

2π

∫ ∞

s=−∞
E0[f(Xt)e

isβ·Xt ]ĝ(s)ds

and g is some state-dependent recovery as fraction of face. Here:

f(Xt) = e−
∫ t
0 (rs+λs)dsλt

= e−
∫ t
0
(ρ̃0+ρ̃1·Xt)ds(λ0 + λ1 ·Xt)

And we can compute:

E0[e
−
∫ t
0 (ρ̃0+ρ̃1·Xs)ds+a+b·Xt ] = eA(t;Θ)+B(t;Θ)·X0

d

dt
B = K⊤

1 B +
1

2
B⊤H1B − ρ̃1 B(0) = b

d

dt
A = K⊤

0 B +
1

2
B⊤H0B − ρ̃0 A(0) = a

Also, considering

h(x) = E0[e
−
∫ t
0 (ρ̃0+ρ̃1·Xs)ds+a+b·Xt+x(c+d·Xt)]

we can differentiate to obtain

h′(0) = E0[e
−
∫ t
0 (ρ̃0+ρ̃1·Xs)ds+a+b·Xt(c+ d ·Xt)].
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And so by differentiating the ODE for h(x) and setting x = 0 we obtain:

E0[e
−
∫ t
0
(ρ̃0+ρ̃1·Xs)ds+a+b·Xt(c+ d ·Xt)] = eA(t)+B(t)·X0 (C(t) +D(t) ·X0)

d

dt
B = K⊤

1 B +
1

2
B⊤H1B − ρ̃1 B(0) = b

d

dt
A = K⊤

0 B +
1

2
B⊤H0B − ρ̃0 A(0) = a

d

dt
D = K⊤

1 D +
1

2
D⊤H1B D(0) = c

d

dt
C = K⊤

0 C +
1

2
D⊤H0B C(0) = d
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