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1 Introduction

Expected inflation and the variance of inflation move considerably over time. While in-

flation was rather smooth in the 1970s and in the period 1990 - 2003, it was high in the

early 1980s. Investors face two issues in modeling the effect of inflation. First, given the

structure of a model, investors face inflation risk and require an inflation risk premium for

bearing unanticipated shocks to inflation. In bearing this inflation risk premium, investors

take the distribution, especially the conditional volatility of inflation, as known. Second,

investors may be uncertain about the true statistical distribution of inflation.1 If that is

the case, investors require an ambiguity premium to protect themselves against a change

in the underlying inflation model.

This paper specifies and estimates a three-factor model for the nominal term struc-

ture which accounts for the two sources of inflation premia. The first premium is deter-

mined by the product of risk aversion and the covariance between inflation and consump-

tion. The second premium is determined by the product of model uncertainty aversion

and the volatility of inflation. Investors take into account that the underlying inflation

model could be misspecified. The greater the investor’s uncertainty aversion, the more the

investor is concerned about model misspecification and the higher the ambiguity premium.

In the theoretical part of the paper, I introduce inflation ambiguity into a three-factor

structural nominal term structure model. The term structure model contains an inflation

risk premium and an inflation ambiguity premium. The inflation ambiguity premium in

Treasury bond prices is given by the negative covariance of inflation and the market price

of inflation ambiguity. I determine the market price of inflation ambiguity by solving an

agent’s max-min problem. The max-min approach is useful for the investor if he fears

1Uncertainty is understood in the way of Knight (1921). A random variable is uncertain in the Knigh-

tian sense, if its statistical distribution is not known for sure.
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that future inflation might come from a set of unspecified inflation models which are close

to his reference model. The max-min solution can be divided into two separate steps.

First, the investor suspects that his inflation model is not the true description of future

inflation. The investor therefore seeks an inflation model that works well across a set of

models which are close to his reference model and difficult to disentangle. Second, given

that the agent has found his robust inflation model, he maximizes his life-time expected

utility under this robust inflation model. I determine the term structure of real bonds,

inflation expectations and nominal bonds in closed-form. The robust inflation forecast

protects the ambiguity-averse agent against unfavorable inflation misspecifications. The

difference between the robust inflation forecast and the inflation forecast if the model was

perfectly known determines the inflation ambiguity premium.

In the empirical part of the paper, I generate an equivalence between the inflation

ambiguity premium and the inflation variance premium by assuming that the upper bound

of potential inflation misspecifications moves with the volatility of inflation. Intuitively,

when the volatility of inflation increases, it becomes more difficult to estimate the drift of

inflation precisely. The agent therefore doubts his underlying inflation model more if he

observes more dispersed inflation realizations.

I test the model with U.S. data. I analyze whether there is evidence that investors

command an inflation ambiguity premium and whether this premium helps to explain

movements in the nominal yield curve. To identify the various components of the model,

such as real yields, inflation expectations, inflation risk premium and inflation ambiguity

premium, I use a data set comprising nominal Treasury yields and a panel of inflation,

consumption growth and money growth, at a monthly frequency from 1970 to 2003.

The estimation identifies the following cross-sectional properties. First, the term

structures of the inflation ambiguity premium and of real yields are upward sloping. The

inflation ambiguity premium is negative for short-maturity bonds and positive for long-
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maturity bonds. This means that model uncertainty with regard to inflation increases

the required excess return for long-end Treasury bonds and reduces them for short-term

bonds. In times of inflation uncertainty, it is more difficult to predict inflation over the

next ten years than it is to forecast future inflation over the next six months. Ambiguity

averse investors therefore prefer to hold short-term bonds instead of long-term bonds.

This increases the price of short-term bonds and reduces the price of long-term bonds.

Second, the term structure of inflation expectations is flat and the term structure

of the inflation risk premium is downward sloping, high for short-maturity bonds and

slightly negative for long-maturity bonds. The inflation risk premium is a measure for the

conditional covariation of inflation and consumption. This covariation is relatively high

for a horizon of up to two years, and quickly mean reverts to zero for longer maturities.

Inflation shocks have no persistent effect on consumption.

Third, during the monetary policy experimentation of the 1979 − 1983, the term

structure of inflation expectations sloped strongly downwards while the term structure of

inflation ambiguity sloped strongly upwards. The term structure of the inflation risk pre-

mium remained unchanged. During this period, investors expected high inflation to mean

revert to lower levels and therefore priced nominal bonds with a lower expected inflation.

At the same time, investors charged a steep inflation ambiguity premium, because they

were highly concerned that their inflation model might not be the correct one.

Finally, I find that the estimated inflation ambiguity premium plays an important

role in explaining the variance of nominal yields. Variations in nominal yields are due

to changes in expected inflation and due to changes in the inflation ambiguity premium.

Fluctuations in the inflation ambiguity premium explain a big fraction of nominal yield

movements at the very short- and the very long-end of the nominal yield curve. For the six-

month bond it explains 14.45% and for the ten year bond it explains 54% of the variation.

The remaining fluctuations are mostly due to to changes in expected inflation. I also
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find evidence that inflation ambiguity helps to explain deviations from the expectation

hypothesis as measured by the Campbell-Shiller coefficients.

The rest of the paper is organized as follows. Section 2 presents the model, Section

3 presents the data and estimation methodology. Section 4 presents the empirical results,

section 5 summarizes related literature and contrasts them to this paper. Section 6 con-

cludes. The proofs to the paper are summarized in a separate technical appendix to this

paper, which can be accessed via the author’s homepage.

2 The Model

2.1 Real Economy

2.1.1 Representative Agent

The representative agent has time separable and logarithmic preferences in consumption

holdings ct and real monetary holdings mt
2 The agent holds a capital stock Kt and owns

a linear technology At which produces an output good Yt, i.e. Yt = AtKt. The exogenous

2In particular, U(x) =
∫∞

0
e−ρt log(xt)dt, xt ≡ ctm

γ
t , γ ∈ [0, 1]. Real monetary holdings mt are equal to

the ratio of nominal money supply Mt and the price level pt in the economy. I follow the assumption that

real monetary balances are held in equilibrium because they reduce the total amount of gross resources,

xt ≡ ctm
γ
t , needed to obtain a given level of net consumption ct. Real money balances are said to provide

a transaction service to the agent. The size of this transaction service is modeled through the parameter

γ. If γ = 0, money does not provide a transaction service, whereas γ = 1 means that the agent has to

hold one unit of money for every unit of consumption holdings. For γ ≡ 0 this framework specializes to

the standard RBC model.
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growth rate of the technology is given by

dAt = (µA + νAzt)dt + σA

√
ztdW z

t (2.1)

dzt = κz(θz − zt)dt + σz

√
ztdW z

t . (2.2)

The stochastic technological innovation zt follows a stationary square-root process which

fulfils the usual stationarity and integrability conditions. The agent can invest ζP of his

wealth in this production technology and the remaining wealth ζN in a nominal risk-free

bond. The real return of the investment into the nominal bond is not known ex-ante,

because inflation is stochastic. I assume that inflation is affected by three random state

variables: the consumption factor zt, the inflation volatility factor vt, and the inflation

drift factor ωt. These three state variables make up the state space St of the model, i.e.

St = {zt, vt, ωt}. The central bank is assumed to control an additional monetary shock

which is denoted W M̂ and which is orthogonal to the state shocks.

The agent maximizes his life-time utility with respect to consumption and money

demand, while at the same time taking into account that the real return on the nominal

bond is risky and uncertain.

max
ct,mt,ζN ,ζP

min
h(St)∈Θ(St)

EQh(St)

[∫ ∞

t

e−ρ s (log (cs) + γ log (ms)) ds|Ft

]

(2.3)

subject to the budget- and Entropy constraint

dWt = WtζP ((µA + νAzt)dt + σA

√
ztdW z

t ) − ctdt − mtdt − δζPWtdt+

+ WtζN








[R(St) − µp(St)]dt − σp(St) ·








dW z

dW v

dW M̂,h(St) + h(St)dt















(2.4)

1

2
h2(St) ≤ η(St). (2.5)

The set Θ(St) is assumed to be a well defined and nonparametric set of potential inflation

priors.
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Equation (2.3) represents the objective function of the ambiguity averse agent. The

agent maximizes his life-time utility function with regard to consumption ct, money de-

mand mt and portfolio holdings ζ , while at the same time insuring himself against a

worst case inflation distortion, h(St), which the central bank chooses. Equation (2.4) is

the intertemporal budget constraint. The first line of the budget constraint shows that

the agent can invest a fraction ζP of his wealth into the production technology, he can

consume real consumption and real money holdings and part of the capital stock depre-

ciates at rate δ. The second line shows that the agent can invest a fraction of his wealth

ζN into the risk-free nominal bond, which is risky and uncertain in real terms. The source

of uncertainty is the true monetary policy shock dW M̂,h(St) that the central bank fully

controls. If the agent is not ambiguity averse with regard to this shock, h(St) equals zero

and the max-min objective function reduces to a standard rational expectations objective

function. In the other cases, h(St) will be determined endogenously as a solution to the

minimization problem. Equation (2.5) of the budget constraint represents the entropy

constraint which specifies that the investor wants to protect himself against conditional

inflation drift distortions which are smaller or equal to η(St). Assuming sufficient smooth-

ness conditions, this upper bound η(St) can be any nonparametric combination of the

underlying state variables. This upper bound is therefore allowed to be time-varying and

stochastic. The next proposition summarizes the solution to the minimization problem.

Proposition 1 (Equilibrium - Optimal Degree of Inflation Robustness) The op-

timal degree of inflation distortion that the ambiguity averse agent takes into account is

given by

h∗(St) =
√

2η(St). (2.6)

Proposition 1 presents the optimal degree of inflation misspecification. The endoge-

nously determined degree of misspecification results from solving the minimization prob-
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lem within the max-min operation. The agent’s model uncertainty with regard to the

inflation model causes the agent to adjust his locally expected inflation rate by h∗(St).

This optimal degree of distortion is a square-root function of the upper bound.

The solution to the minimization problem provides the agent with the optimal de-

gree of robustness. Given this endogenous degree of robustness, the agent adjusts his

probability measure and solves a standard rational expectations maximization problem.

This two step optimization procedure makes the max-min set-up very tractable. The next

proposition summarizes the resulting equilibrium policy functions for consumption and

money demand.

Proposition 2 (Equilibrium - Optimal Consumption and Money Demand) The

Optimal consumption and money demand is given by

c∗t =
ρ

1 + γ
Wt (2.7)

m∗
t = γc∗t . (2.8)

These optimal values are financed by a optimal trading strategy. His optimal strategy is to

invest his wealth into the production technology:

ζP = 1, ζN = 0. (2.9)

Proposition 2 states that the agent consumes in equilibrium a constant fraction of his

wealth. The agent follows an optimal trading strategy in which wealth is totally invested in

the production technology. The nominal bond is in zero net supply. The expected return of

an investment into the nominal bond is a shadow price for the equilibrium constraint that

the representative agent invests all his wealth into the production technology. Inflation

ambiguity in my model does not affect the policy function for consumption and money

demand. Instead, it affects the expected excess return of the inflation-sensitive nominal

bond.
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The mirror image of consumption not being affected by inflation ambiguity is that

the real interest rate, rt, and the market price of output risk, λr,Y (t), are not affected

by inflation ambiguity. These values coincide with a standard Cox, Ingersoll, and Ross

(1985a) economy. The next proposition summarizes this result.

Proposition 3 (Equilibrium - Real Interest Rate and Real Market Price of Risk)

The real interest rate rt and the market price of output risk λr,Y (t) are given by

rt = µA + νA zt − δ − σA
2zt (2.10)

λr ,Y (t) = σA

√
zt. (2.11)

The first equation presents that the real interest rate accounts for the growth rate of

the production process minus capital depreciation and precautionary savings. The second

equation summarizes that there is one market price of risk, namely market price of output

risk. Having determined the real interest rate and real market price of risk allows the

pricing of inflation-indexed bonds. Their equilibrium values are summarized in the next

proposition.

2.1.2 Real Term Structure

Given the solution of the equilibrium consumption and investment problem, I solve di-

rectly for the term structure of inflation indexed-bonds. Its value is determined by the

Euler equation,

Bt(τ) = e−ρτEP
t

[
uc(c

∗
t+τ , m

∗
t+τ )

uc(c∗t , m
∗
t )

]

, τ > 0, (2.12)

where uc denotes the partial derivative of u with respect to c and c∗, m∗ denote optimal

consumption and money holdings. The following proposition summarizes the analytic

solution for the term structure of real bonds:
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Proposition 4 (Term Structure of Real Bonds) The closed-form solution for the equi-

librium price of a real zero-coupon bond Bt(τ) with time to maturity τ is given by a

log-linear function of the business cycle state variable zt:

Bt(τ) = A(τ) e−br
z(τ)·zt , ∀τ ∈ R

+; (2.13)

where A(τ), br
z(τ) are deterministic functions of the structural parameters of the economy.

The equilibrium term structure for real bonds shows that fluctuations in the real

bond values are driven by variations in aggregate output.

To price nominal bonds, I endogeneize inflation. The endogenous process for inflation

is affected by the uncertain monetary policy shock. It is optimal for the ambiguity averse

agent to distort the expected inflation rate by an amount of h∗(θ) =
√

2η(θ). The next

section shows that this robust inflation adjustment to the true monetary policy shock W M̂

affects the expected growth rate of money supply, inflation and it affects the expected

excess return of inflation-sensitive assets.

2.2 Incorporating Inflation

2.2.1 Monetary Policy Rule

I model the general structure of the money supply rule under the ambiguity-free measure

P similar to Buraschi and Jiltsov (2005). Agents believe that the monetary authority

follows a Taylor-type rule for base money. The degree of output and inflation targeting are

represented by q1 and q2, respectively. Both variables are determined by the central bank.

If q1 and q2 are different from zero, the output growth rate dYt

Yt
as well as the equilibrium
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inflation rate dpt

pt
influence the drift and volatility of the money supply process.

dMt

Mt

= ωtdt + q1

(
dYt

Yt

− ŷdt

)

+ q2

(
dpt

pt

− π̂dt

)

+ ρMvσM

√
vtdW v

t

+
√

1 − ρ2
MvσM

√
vt dW M̂

t , ρMv ∈ [0, 1], (2.14)

dωt = κω (θω − ωt) dt + σω

√
ωt dW ω

t , (2.15)

dvt = κv (θv − vt) dt + σv

√
vt dW v

t . (2.16)

First, in equation (2.14) the monetary authority tries to meet its inflation target π̂

and output growth target ŷ with weights q1 and q2, respectively. Second, the monetary

authority only imperfectly controls the monetary aggregate. Therefore, the money sup-

ply rule is affected by two other stochastic processes, ωt and vt. The state variables ωt

influences the long-term money growth rate, whereas the latter shock vt influences the

conditional volatility of the money growth rate. All Brownian shocks are orthogonal to

each other.

The money supply process is affected by the true monetary policy shock. The en-

dogenously determined drift misspecification of the true monetary policy shock has been

determined in (2.6). This misspecification affects the conditional growth rate of the money

supply process. The next proposition summarizes how the equilibrium misspecification af-

fects the money growth rate.
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Proposition 5 (Ambiguity-Adjusted Dynamic of Nominal Aggregates) The ambiguity-

adjusted dynamic of the nominal aggregates in the economy are given by

dMt

Mt

= ωtdt + q1

(
dYt

Yt

− ŷdt

)

+ q2

(
dpt

pt

− π̂dt

)

+ κM(t)dt + ρMvσM

√
vtdW v

t +
√

1 − ρMv
2σM

√
vtdW M̂,h∗(St), (2.17)

dW M̂,h∗(St) = dW M̂ − h∗(St) (2.18)

κM(t) =

√

1 − ρMv
2σM

1 − q2
· √vt · h∗(St). (2.19)

Proposition 5 shows that the misspecification of the true monetary policy shock adds

an additional term to the conditional expected value of money growth. This additional

term is called κM(t). It also affects the unconditional variance of the nominal aggregates.

The ambiguity adjustment κM(t) is the product of the market price of inflation ambiguity,

h∗(St), and the amount of inflation ambiguity in the money supply process,

√
1−ρMv

2σM

1−q2
·

√
vt.

The price level in the economy is determined via the money market clearing condi-

tion, p∗t := Mt

m∗

t
. Its endogenously determined degree of misspecification is summarized in

the following proposition.

Proposition 6 (Equilibrium Price Level) The equilibrium inflation dynamic is given

by

dp∗t
p∗t

= µp(St) dt + σp(St) ·








dW z

dW v

dW M̂,h∗(St) + h∗(St)dt








(2.20)

and the endogenous degree of inflation misspecification is given by σp(St)h
∗(St).

The endogenously determined degree of model misspecification h∗(St) affects the condi-

tional expected value of inflation. The optimal amount of inflation drift distortion is given

by the product of the market price of inflation ambiguity h∗(St) and inflation volatility.
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The functions µp(St), σp(St) are specified in the technical appendix of this paper.

Proposition 6 shows that if the agent does not know the true inflation model, he adds

to his conditional expected inflation rate µp(St) an inflation ambiguity premium, σp(St) ·

(0, 0, h∗(St)). The ambiguity premium in inflation is the product of the market price of

ambiguity times inflation volatility. The results so far do not depend on any particular

parametric structure of the upper bound of potential inflation drift distortions.

After having endogeneized the inflation process, we can immediately determine the

nominal interest rate R(t) and the nominal market prices of risk λR that nominal assets

have to pay. The next proposition summarizes its equilibrium values.

Proposition 7 (Nominal Interest Rate and Nominal Market Price of Risk) The

nominal interest rate Rt and the nominal market price for output risk λR,Y (t) as well as

the nominal market price of monetary risk λR,M̂(t) and λR,v(t) are given by

R(t) = δ0 + δ′1








zt

vt

ωt








+

√

1 − ρ2
MvσM

1 − q2

√
vth

∗(St) (2.21)

λR,Y =
σA

√

z (t) (q1 − q2 )

1 − q2

(2.22)

λR,v(t) =
ρMv σM

√

v (t)

1 − q2

(2.23)

λ
R,M̂ (t) =

√

1 − ρ2
Mv

σM

√

v (t)

1 − q2

(2.24)

where δ0 and δ1 are deterministic functions of the underlying economy. There parametric

form is specified in the technical appendix of this paper.

The endogenous inflation ambiguity adjustment

√
1−ρ2

Mv
σM

1−q2

√
vth

∗(St) affects the oth-

erwise standard equilibrium nominal interest rate in my economy. The nominal market

prices of risk are not affected by the agent’s ambiguity. The intuitive reason for this is
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that market prices of risk coincide with the volatilities of the intertemporal marginal rate

of substitution (IMRS), whereas market prices of uncertainty coincide with its drift mis-

specification. The endogenous inflation ambiguity adjustment affects the nominal interest

rate. It will therefore, also affect the term structure of nominal bonds.

2.3 Role of Inflation Risk in the Term Structure of Nominal

Bonds

The price of a nominal bond in an economy without inflation ambiguity is well studied

in the literature (Bakshi and Chen (1996), Wachter (2006), Buraschi and Jiltsov (2005)).

Such a framework is a special case of an economy that is subject to model uncertainty.

In my model, I define the nominal bond price in an economy that is NOT subject to

inflation ambiguity as N̂t(τ). Due to the lack of inflation ambiguity, the set of potential

priors collapses to a single prior. The ambiguity-free bond price is then determined via

an Euler equation, where the expectation is solved under this single prior. As usual, uc

denotes the partial derivative of u with respect to c and the ∗ variables denote optimal

equilibrium values.

N̂t(τ) = e−ρ τEP
t

[
uc(c

∗
t+τ , m

∗
t+τ )

uc(c∗t , m
∗
t )

p∗t
p∗t+τ

]

= Bt(τ)
︸ ︷︷ ︸

RealBondPrice

EP
t

[
p∗t

p∗t+τ

]

+ covP
t

(
uc(c

∗
t+τ , m

∗
t+τ )

uc(c∗t , m
∗
t )

,
p∗t

p∗t+τ

)

︸ ︷︷ ︸

InflationRiskPremium

, ∀τ ∈ R
+. (2.25)

This Euler equation coincides with the one in a rational expectations model. The

difference between the nominal bond price and the product of real bond price and price

deflator is entirely attributed to the inflation risk premium. The inflation risk premium

can therefore be derived in analytical form.
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Proposition 8 (Identification of the Inflation Risk Premium) The term structure

of inflation risk premia is given by the nominal ambiguity-free term structure minus the

product of the term structure of real bonds and the term structure of price deflators, i.e.

covP
t

(
uc(c

∗
t+τ , m

∗
t+τ )

uc(c∗t , m
∗
t )

,
p∗t

p∗t+τ

)

= N̂t(τ) − Bt(τ)EP
t

[
p∗t

p∗t+τ

]

. (2.26)

The closed-form solution for the equilibrium price of an ambiguity-free nominal zero-

coupon bond N̂t(τ) with time to maturity τ is given by a log-linear function of the state

variable vector St :

N̂t(τ) = Ẑ(τ) e−b̂z(τ)·zt−b̂ω(τ)·ωt−b̂v(τ)·vt , ∀τ ∈ R
+; (2.27)

where Ẑ(τ), b̂z(τ), b̂ω(τ), b̂v(τ) are deterministic functions of the structural parameters of

the economy.

The corresponding nominal yield curve is affine in the underlying state variables,

ŷt(τ) = −1

τ

(

ln Ẑ(τ) − b̂z(τ)zt − b̂ω(τ)ωt − b̂v(τ)vt

)

. (2.28)

The closed-form solution for the equilibrium term structure of the price deflator is

a log-linear function of the nominal and real state variables, i.e.

EP
t

[
p∗t

p∗t+τ

]

= Ap(τ)e−b
p
z(τ)z(t)−b

p
ωω(t)−b

p
v(τ)v(t), ∀τ ∈ R

+; (2.29)

where Ap(τ), bp
z(τ), bp

ω(τ), bp
v(τ) are deterministic functions of the structural parameters

of the economy.

The characterization of the deterministic functions and the proof of the proposition

can be found in the technical appendix of this paper.
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2.4 Role Of Inflation Ambiguity in the Term Structure of Nom-

inal Bonds

The role of inflation ambiguity in the term structure of nominal bonds can be derived in

a straight forward way. The ambiguity averse agent holds the bond in zero net supply iff

its price is determined according to the ”robust” Euler equation.

Nt(τ) = e−ρ τE
Qh∗(St)

t

[
uc(c

∗
t+τ , m

∗
t+τ )

uc(c
∗
t , m

∗
t )

p∗t
p∗t+τ

]

, ∀τ ∈ R
+. (2.30)

= e−ρ τEP
t

[
dQh∗(St)

dP

uc(c
∗
t+τ , m

∗
t+τ )

uc(c∗t , m
∗
t )

p∗t
p∗t+τ

]

, ∀τ ∈ R
+. (2.31)

The difference between this Euler equation and the Euler equation in a rational

expectations model is that the expectation is taken under the endogenously determined

inflation ambiguity adjusted probability measure. The difference between both bond prices

coincides with the inflation ambiguity premium. To shed light on the role that inflation

ambiguity might have in the term structure of nominal bonds, one can re-write the above

expectation to get

Nt(τ) = EP
t






e−ρτ uc(c

∗
t+τ , m

∗
t+τ )

uc(c
∗
t , m

∗
t )

︸ ︷︷ ︸

IMRS







︸ ︷︷ ︸

RealBondPrice

· EP
t

[
p∗t

p∗t+τ

]

︸ ︷︷ ︸

PriceDeflator

+ covP
t

(
uc(c

∗
t+τ , m

∗
t+τ )

uc(c
∗
t , m

∗
t )

,
p∗t

p∗t+τ

)

︸ ︷︷ ︸

InflationRiskPremium

+

+ covP
t








uc(c
∗
t+τ , m

∗
t+τ )

uc(c∗t , m
∗
t )

p∗t
p∗t+τ

︸ ︷︷ ︸

NominalRiskKernel

,
dQ

h∗(St)
t,t+τ

dPt,t+τ
︸ ︷︷ ︸

AmbiguityKernel








︸ ︷︷ ︸

AmbiguityPremium

(2.32)

dQ
h∗(St)
t,t+τ

dPt,t+τ

:= e−
1
2

∫ t+τ

t
||h∗(S(u))||2du+

∫ t+τ

t
h∗(S(u))dW M̂ (u). (2.33)
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The first line on the rhs coincides with the nominal bond price in an economy

without ambiguity, i.e. N̂t(τ). It therefore holds that

Nt(τ) = N̂t(τ) + covP
t








uc(c
∗
t+τ , m

∗
t+τ )

uc(c∗t , m
∗
t )

p∗t
p∗t+τ

︸ ︷︷ ︸

NominalRiskKernel

,
dQ

h∗(St)
t,t+τ

dPt,t+τ
︸ ︷︷ ︸

AmbiguityKernel








︸ ︷︷ ︸

AmbiguityPremium

. (2.34)

The last equation shows that investor’s ambiguity with regard to the true inflation

model enters the Treasury yield curve through a covariance term, the covariance of the

ambiguity kernel with the nominal risk kernel. An investor in an inflation ambiguous econ-

omy requests an additional premium, which is characterized through the last covariance

term. Splitting up this term shows that in general, inflation ambiguity has two channels

to enter the term structure. One is through covariation of the ambiguity kernel with the

IMRS and the second is through the covariation of the ambiguity kernel with the price

deflator. i.e.

covP
t








uc(ĉt+τ , m̂t+τ )

uc(ĉt, m̂t)

p̂t

p̂t+τ
︸ ︷︷ ︸

NominalRiskKernel

,
dQ

h∗(St)
t,t+τ

dPt,t+τ
︸ ︷︷ ︸

AmbiguityKernel








︸ ︷︷ ︸

AmbiguityPremium

= covP
t








uc(ĉt+τ , m̂t+τ )

uc(ĉt, m̂t)
︸ ︷︷ ︸

IMRS

,
dQ

h∗(St)
t,t+τ

dPt,t+τ
︸ ︷︷ ︸

AmbiguityKernel








︸ ︷︷ ︸

=0

+covP
t








p̂t

p̂t+τ
︸︷︷︸

PriceDeflator

,
dQ

h∗(St)
t,t+τ

dPt,t+τ
︸ ︷︷ ︸

AmbiguityKernel








. (2.35)

In this paper, the source of ambiguity, W M̂ , affects the price deflator and not the

IMRS. I therefore, identify the inflation ambiguity premium as the covariance between

the ambiguity kernel and the price deflator. The resulting interpretation is very clean.

The inflation ambiguity premium equals the distance between the ambiguity adjusted
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expected inflation rate and the ”true” expected inflation rate. I call this distance the

inflation ambiguity premium IAPt(τ) and summarize its analytical structure in the next

proposition.

Proposition 9 (Identification of the Inflation Ambiguity Premium) The term struc-

ture of the inflation ambiguity premium is given in analytical form as the covariance of

the market price of uncertainty with inflation, i.e.

IAPt(τ) := covP
t








p̂t

p̂t+τ
︸︷︷︸

PriceDeflator

,
dQ

h∗(St)
t,t+τ

dPt,t+τ
︸ ︷︷ ︸

AmbiguityKernel








︸ ︷︷ ︸

InflationAmbiguityPremium

= E
Qh∗(St)

t

[
pt

pt+τ

]

− EP
t

[
pt

pt+τ

]

︸ ︷︷ ︸

InflationAmbiguityPremium

= Nt(τ) − N̂t(τ).

(2.36)

My model provides a very easy way to extract the inflation ambiguity premium from

the term structure of nominal bonds. First, the econometrician specifies the market price

of inflation ambiguity. Second, the full model is estimated. Third, the estimated market

prices of ambiguity are set to zero to get N̂t(τ). Fourth, the inflation ambiguity premium

can be measured according to the last proposition.

Steps two to four are straight forward. In the next paragraph I show how I specify

the ambiguity kernel for the econometric exercise.

2.4.1 Measuring Ambiguity in the Data

In order to determine the price of nominal bonds, one has to parameterize the upper

bound of potential inflation misspecifications. I assume the following parameterization.

Assumption: [Parameterizing the Entropy Constraint] The parametric form for

the upper bound of all potential inflation drift misspecifications is assumed to have the
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following law of motion

η(St) :=
1

2

(

qa1

√
vt +

qa2√
vt

+ qa3

zt√
vt

)2

, ∀t ≥ 0, qa1 , qa2 , qa3 ∈ R. (2.37)

The corresponding market price of inflation ambiguity h∗(St) takes the form

h∗(St) =

(

qa1

√
vt +

qa2√
vt

+ qa3

zt√
vt

)

, (2.38)

which generates an affine ambiguity adjustment in inflation

κM(t) =

√

1 − ρ2σM

1 − q2
(qa1vt + qa2 + qa3zt) . (2.39)

This affine structure has several features. First, the upper bound depends on the

state variables that affect the conditional inflation volatility. This is sensible because it

captures the fact that an increase in inflation volatility makes it more difficult to estimate

the drift of inflation correctly. Second, the endogenous inflation ambiguity premium, which

arises from (2.37) and (2.6) affects the bond price elasticity and changes the amount of

priced risk that a nominal bond contains, even if the underlying macro risk remains the

same. The intuition for that is that in times of higher inflation volatility, not only does the

inflation risk premium increase3, but it also becomes more difficult to estimate the drift

of inflation precisely. This leads to an increasing set of potential inflation priors, from

which nature will choose the worst one. Thus, the endogenously determined inflation

ambiguity premium increases, because the worst-case expected growth rate of inflation

increases.4 Third, it generates a negative correlation between the nominal risk kernel and

3The inflation risk premium increases because the increasing inflation volatility increases the correla-

tion between the intertemporal marginal rate of substitution and inflation. Said differently, the distance

between the risky and the risky-neutral measure, i.e. dP
dQ

, diverges.
4The inflation ambiguity premium increases because the estimation of the true inflation drift becomes

more uncertain. Hence, the distance between the ambiguity adjusted measure and the risky measure

increases, i.e. dQh
∗(St)

dP
.
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the ambiguity kernel. This negative correlation helps to explain the empirically observed

upward sloping Treasury yield curve. Moreover, it helps to explain why the nominal yield

spread has been co-moving positively with inflation variance. Finally, the specification

produces an affine term structure model.

The corresponding nominal bond price is given in the following proposition.

Proposition 10 (The Nominal Term Structure) 5 The closed-form solution for the

equilibrium price of a nominal zero-coupon bond Nt(τ) with time to maturity τ and am-

biguity adjustment (2.38) is given by a log-linear function of the state variable vector

St,

Nt(τ) = e−ρ τE
Qh∗(St)

t

[
uc(c

∗
t+τ , m

∗
t+τ )

uc(c
∗
t , m

∗
t )

p∗t
p∗t+τ

]

, ∀τ ∈ R
+ (2.40)

Nt(τ) = Z(τ) e−bz(τ)·zt−bω(τ)·ωt−bv(τ)·vt , ∀τ ∈ R
+; (2.41)

where Z(τ), bz(τ), bω(τ), bv(τ) are deterministic functions of the structural parameters of

the economy.

The corresponding nominal yield curve is affine in the underlying state variables,

yt(τ) = −1

τ
(lnZ(τ) − bz(τ)zt − bω(τ)ωt − bv(τ)vt) . (2.42)

The nominal yield curve, − 1
τ

ln(Nt(τ)) is linear in the three state variables. The

assumed entropy constraint in equation (2.37) preserves the simple affine bond pricing

structure that is known from models like Cox, Ingersoll, and Ross (1985b), Vasiček (1977),

and others. As in Buraschi and Jiltsov (2005), the inflation target and output target of the

central bank affects the intercept of the yield curve but not the slope with respect to the

state variables. On the other hand, inflation ambiguity also affects the slope and curvature

5The characterization of the deterministic functions and the proof of the proposition can be found in

the technical appendix of this paper.
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of the yield curve. As in other multi-factor term structure models, such as Longstaff and

Schwartz (1992), Constantinides (1992), and Buraschi and Jiltsov (2005), my model is

able to capture different shapes of the yield curve.

2.4.2 Identifying the Ambiguity Premium in the Data

The corresponding inflation ambiguity premium in the yield curve, which I call IAPy(t, τ),

is defined by

IAPy(t, τ) := yt(τ) − ŷt(τ) (2.43)

= −1

τ

(

ln
Z(τ)

Ẑ(τ)
− (B(τ) − B̂(τ))St

)

, (2.44)

where B(τ) = [bz(τ) bv(τ) bω(τ)]′ and B̂(τ) = [̂bz(τ) b̂v(τ) b̂ω(τ)]′.

It can be shown that the entropy constraint in equation (2.37) combined with (2.6),

(2.20) and (2.33), leads to the inflation ambiguity premium being proportional to the

variance of inflation.

IAPt(τ) = a(τ) · vart

(
p∗t+τ

p∗t

)

, a(τ) ∈ R. (2.45)

3 Estimation

3.1 Methodology

I estimate the model by Quasi Maximum Likelihood (QML). The log-likelihood function

LT (ΩP ), where T represents the sample size and ΩP summarizes the parameter space of

the bond model, is fully characterized in the technical appendix of this paper. To conduct
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the estimation, I match a panel of six bond maturities (1, and 6 month, 1, 2, 5, and 7 years)

as well as inflation, consumption- and money growth. I solve for the unobservable state

vector St by inverting the affine yield relationship for the three-month, three-year, and

ten-year zero-coupon bonds. This procedure is standard in empirical affine term structure

modeling. It has been successfully applied by Chen and Scott (1993), Duffee (2002) and

many others. Moreover, I assume that the measurement error shocks are conditionally

joint normal distributed and orthogonal to the shocks to the unobservable states.

To reduce the parameter space, the following parameters are fixed ex-ante: I set

the capital depreciation rate to 5 percent. I set the real output growth target (inflation

target) ŷ (π̂) to the mean of consumption growth (inflation) in the data, i.e. ŷ = 0.033

(π̂ = 0.047). I set the subjective time discount factor to ρ = 0.05. Further, I set the

transaction service of money to γ = 0.05. Using the terminology of Dai and Singleton

(2000), my affine term structure model is an econometrically identified A3(3) model.

3.2 Data

The sample consists of smoothed continuously compounded Fama-Bliss yields and price,

money supply and consumption data for the period January 1970 to December 2003. The

interest rate data comprises nine different maturities (1, 3 and 6 month as well as 1, 2,

3, 5, 7 and 10 years).6 I take inflation data from the Consumer Price Index (CPI) for all

urban consumers. The money supply data is the M2 money stock from the official H.6

release of the Federal Reserve Board of Governors. The M2 money stock includes money

market deposit accounts, which can be used to buy services and products. It is the most

adequate representation of money in the model. In comparison, M3 contains instruments

that pay significant interest and, therefore, it is too wide. As consumption growth data I

6I thank Rob Bliss for sharing his data and programs with me.
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take price level deflated nondurable goods and services from the Personal Consumption

Expenditures database. This database is provided by the Bureau of Economic Analysis.

4 Empirical Analysis

4.1 Parameter Estimates

I present the parameter estimates of the structural model in table 1. The three latent state

variables are identified by the panel of nominal yields and by consumption growth, money

growth and inflation. The estimated speed of mean-reversion shows that each factor has

different effects on the nominal yield curve. The most persistent factor is ωt which basically

represents variations in expected inflation. Its estimated speed of mean-reversion of 0.0034

argues that shocks to expected inflation are the most persistent. Expected inflation is

therefore the persistent nominal term structure factor. The second most persistent factor

is the business cycle factor zt with a speed of mean-reversion of 0.0693. This corresponds

to a half-life of 4 years.7 The least persistent factor is the inflation volatility factor vt with

a half-life of five months. A half-life of five months means that half of inflation volatility

innovations die out after five months.

I present the cross-sectional in-sample yield fit of the model in table 2. The in-sample

fit for the time period 1970 to 2003 is very good. The average pricing error across all

maturities is 13 basis points. This is remarkable, given that the model fits also consumption

growth, inflation and money growth. Table 3 reports the out-of-sample root-mean-square

errors and its ratio compared to a random walk forecast. The forecast horizon is the

period June 1998 to December 2003. I use the following estimation strategy: I estimate

the model with bond and macro data from January 1970 to May 1998. Starting in May

7The half-life is defined as ln(2)
κ
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1998, for each consecutive month, I re-estimate the model using data up to and including

that month and then forecast the next month’s, next six months’ and next year’s nominal

bond yield. The structural model forecasts the three-month nominal bond yield, which is

often regarded as a good proxy for the Fed’s policy instrument, well across all forecast

horizons. It outperforms random walk forecasts by two percent at a monthly forecast

horizon and by ten percent at an annual forecast horizon.

The good cross-sectional pricing performance suggests that my simple term structure

model with inflation ambiguity describes the U.S. data sufficiently well. It is therefore

interesting to analyze the different components of the model implied nominal yield curve,

especially the inflation risk- and the inflation ambiguity premium.

4.2 Decomposing the Term Structure of Nominal Yields

Table 4 presents the estimated components of the Treasury yield curve for the period

1970 to 2003. The model-implied average one-year U.S. Government bond yield of 6.8

percent consists of a real yield of 2 percent, inflation expectations of 4.2 percent, an

inflation ambiguity premium of -0.26 percent and an inflation risk premium of 0.83 percent.

On the other hand, the model implied average ten-year nominal yield of 7.7 percent is

decomposed into a ten-year real yield of 2.77 percent, an inflation risk premium of −0.19

percent, expected inflation of 4.35 percent and an inflation ambiguity premium of 0.79

percent.

The estimated nominal yield curve is upward sloping with a term spread of 1.2

percent. Three components contribute to the upward sloping term structure: First, the

real yield curve generates a term spread of 1.7 percent. Second, the inflation ambiguity

premium generates a term spread of 1.4 percent. Third, expected inflation generates a

term spread of 0.3 percent. The estimated term spread of the inflation risk premium

23



is −2.2 percent. The very different term spread of the inflation risk premium and the

inflation ambiguity premium shows how different both premia behave.

The inflation risk premium on a six month bond is on average 1.98 percent, whereas

the inflation ambiguity premium is -0.61 percent. For the five year nominal bond both pre-

mia are approximately zero and change their sign for longer maturities. A ten year nominal

bond contains an inflation risk premium of -0.19 percent and an inflation ambiguity pre-

mium of 0.79 percent. It is known from equation (2.25) that the inflation risk premium is

a measure for the negative future covariance between consumption and inflation. A high

inflation risk premium at the six month horizon of 1.98 percent coincides with a highly

negative conditional covariance of consumption with inflation over the next six months.

This negative conditional covariance flattens towards zero for longer time horizons. This

cross-sectional inflation risk premium arises from: First, the general equilibrium money

market clearing condition pt :=
Ms

t

md
t

which postulates a negative relation between changes

in the price level and real activity. And Second it arises from the estimated cross-section

of the business cycle bond yield factor loading, bz(τ), that is shown in figure 1. This

business cycle factor loading summarizes the cross-sectional impact that fluctuations in

the business cycle factor zt have on the nominal term structure. The impact is strongly

positive for short-end yields and zero for long-term nominal yields. The negative relation

between changes in real activity and changes in inflation which are driven by the business

cycle factor zt, together with the fast decaying business cycle factor loading bz(τ) explains

why the inflation risk premium is positive and downward sloping.

The underlying economic intuition for an upward sloping inflation ambiguity pre-

mium that is negative for short-maturity bonds and positive for long-maturity bonds is

straight forward. In times of high inflation uncertainty, it is more difficult to predict the

correct inflation model over the next ten years compared to forecasting the true infla-

tion model over the next six months. Ambiguity averse investors therefore prefer to hold
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short-term bonds instead of long-term bonds, pushing up the price of short-term bonds

and reducing the price of long-term bonds. The corresponding movements in the nominal

yield curve are decreasing short-term yields and increasing long-term yields.

The term spread on the inflation risk premium remained rather constant during

the monetary policy experimentation in 1979− 1983 and during the great moderation in

1984−2003. The intuition for that finding is a stable equilibrium relation between inflation

and real activity, as measured by the conditional negative covariance between consumption

and inflation. In contrast, the inflation ambiguity premium became very steep during the

monetary policy experimentation, producing a term spread of 4 percent. This can be seen

in the left panel of figure 2. The economic intuition of the previous paragraph holds. In

particular, the period of the monetary policy experimentation is characterized by high

monetary policy uncertainty. The U.S. Fed experimented with different monetary policy

regimes which made it difficult for bond investors to forecast the inflation model that

governs inflation over the next ten years. Investors therefore preferred to hold short-term

bonds instead of long-term bonds, which strongly pushed up long-term yields and strongly

reduced yields on the short-end of the nominal yield curve. During the great moderation,

inflation was easier to predict which led to a significant reduction in the inflation ambiguity

premium. The right panel of figure 2 shows that during the great moderation, the term

spread of the inflation ambiguity premium decreased to 1 percent.

4.3 Time-Variation of the Term Structure of Nominal Yields

Figure 3 presents the time-variation of the inflation risk premium and the inflation am-

biguity premium over the business cycle. The left panel contrasts both premia for the

six month bond, the middle panel depicts both premia for the two year bond and the

right panel shows both premia for the ten year bond. These three panels show that the
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short-end inflation risk premium varies very smoothly around two percent, whereas the

inflation ambiguity premium fluctuates very strongly around zero percent, with a negative

peak of -5.8 percent at the end of the monetary policy experimentation and a positive

peak of 2.4 percent in the mid 1970s and the early 2000. Nearly all fluctuations in the in-

flation premium are attributed to the inflation ambiguity premium. Empirically observed

variations in the consumption factor zt and in the volatile inflation variance factor vt

are the reason for this behavior. Model implied consumption growth and model implied

consumption variance are a one-factor model of zt. This consumption factor is identified

by fitting U.S. consumption growth. Since consumption growth is rather smooth in the

data, the extracted time series of zt is smooth as well. The inflation risk premium picks up

the negative covariance between consumption and inflation. All the time variation in the

inflation risk premium is therefore attributed to variations in the smooth consumption

factor zt. In contrast, fluctuations of the inflation ambiguity premium depend, according

to equation (2.38), on the consumption factor zt and on the inflation variance factor vt.

Since zt is very smooth, all the fluctuations in the inflation ambiguity premium go back to

the inflation variance factor vt. Empirically, inflation variance has been strongly fluctuat-

ing, it has been very high in the early 1980s and decreasing in the 1970s and in the period

1990 - 2003. This spiking behavior of inflation variance in the early 1980s and the mean

reversion during the great moderation are picked up by the inflation ambiguity premium.

Table 5 presents a formal variance decomposition of the four nominal yield curve

components. Equation (2.13) shows that the real yield curve is driven by the smooth

consumption factor zt only. The same holds for the inflation risk premium, as we have

seen in the previous paragraph. Expected inflation is driven by the smooth consumption

factor zt and by the volatile nominal drift factor ωt. Equation (2.38) shows that the

inflation ambiguity premium is driven by the smooth consumption factor zt and the

volatile inflation variance factor vt. The smoothness of the consumption factor zt allows
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to view the variation of expected inflation as being driven by the nominal drift factor ωt

and the variation of the inflation ambiguity premium to be driven by vt. Table 5 presents

that the inflation risk premium accounts only for 0.01 percent of the variance of nominal

yields. Since real yields are also driven by the same smooth consumption factor zt, it

is clear why real yields explain also only 0.01 percent of the variance of nominal yields.

All the action in the variance of nominal yields arises from the inflation drift factor ωt

and from the inflation ambiguity factor vt. More than 85 percent of the variance of the

six month nominal yield is explained by expected inflation and more than 14 percent

are explained by the inflation risk premium. Intuitively, this means that variations in

the short-end of the nominal yield curve are primarily due to fluctuations in expected

inflation. In contrast, 54 percent of the variance of the nominal ten year yield is driven by

fluctuations in the inflation ambiguity premium and 45 percent are driven by expected

inflation. Economically, this means that more than half of the variation in the long-end

of the nominal yield curve are due to fluctuations in the inflation ambiguity premium.

Comparing the three panels in figure 3 shows that the time-series of the inflation

ambiguity premium is very interesting and very distinct from the inflation risk premium.

The ambiguity premium has different signs for different bond maturities. This result has

already been indicated in the cross-section. There we have seen that a concern for inflation

ambiguity reduces short-term bond yields at the cost of increasing long-term bond yields.

The time-series draws the same picture. The inflation ambiguity premium for short-term

bonds is nearly as volatile as the one for the ten-year bond. Both have often opposite

signs. This finding suggests that in low inflation variance periods, investors feel confident

about their estimate of the inflation model and prefer to buy long-term bonds over short-

term bonds. This reduces long-term yields and increases short-term yields. In contrast,

during periods of high inflation variance, the representative investor requires a lower yield

for short-term bonds and a higher yield for long-term bonds. The time-variation of the
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inflation risk premium does not change for different nominal bonds, only the value of

the inflation risk premium reduces the longer the maturity of the nominal bond. This is

consistent with the cross-sectional behavior of the inflation risk premium that we have

seen in the previous section.

Figure 4 contrasts the six month and ten year inflation ambiguity premium with the

model implied variance of inflation. The model implied variance of inflation is obtained by

integrating the quadratic norm of σp(St) in equation (2.20). The correlation between the

variance of inflation and the ten year inflation ambiguity premium is 0.7. Both time-series

do clearly move very closely to each other. This supports the view of equation (2.45) that

the inflation ambiguity premium is a measure for the inflation variance premium. The

correlation between the six month inflation ambiguity premium and inflation variance is

-0.6. Hence, a one percent increase in inflation variance leads ceteris paribus to a 60 basis

points decline in the six-month bond yield, to a 70 basis points increase in the ten year

bond yield and to a 1.3 percent increase in the nominal term spread.

4.4 Campbell-Shiller Coefficients

A popular way to measure conditional risk premia of nominal bonds is the method pro-

posed by Campbell and Shiller (1991), CS afterwards. CS analyze whether the current

slope of the nominal yield curve explains future yield changes. The expectation hypothe-

sis holds if the CS coefficients are one. Many empirical papers reject this hypothesis. Dai

and Singleton (2002) show an equivalence between matching the empirically observed CS

coefficients and matching the empirical dynamic of the yield curve. The appendix to this

paper presents the derivation of the model implied CS coefficients of my structural model.

The next proposition summarizes the result
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Proposition 11 (Population Campbell-Shiller Coefficients) The population Camp-

bell and Shiller (1991) coefficients of my structural model are given by

φn =
cov(yt+m(n − m) − yt(n), yt(n) − yt(m)) m

n−m

( m
n−m

)2var(yt(n) − yt(m))
(4.1)

=
m

n−m

∑

i∈{z,v,ω}(
bi(n−m)

n−m
b0
i (n, m)cov(i(t + m), (i(t))) − bi(n)

n
b0
i (n, m)var(i(t)))

(
m

n−m

)2∑

i∈{z,v,ω}(b
0
i (n, m))2var(i(t))

(4.2)

with

var(i(t)) = θ
σ2

i

2κ
, ∀i ∈ {z, v, ω} (4.3)

cov(i(t), i(t + m)) = e−κm(
σ2

i θ

2κ
), ∀i ∈ {z, v, ω} (4.4)

b0
i (n, m) =

bi(n)

n
− bi(m)

m
, ∀i ∈ {z, v, ω}. (4.5)

The factor loadings bi(τ), ∀i ∈ {z, v, ω} are derived in proposition (10). These loadings

contain the market prices of risk, equation (7), and the market prices of inflation ambi-

guity, equation (2.38). In order to derive the CS coefficients that only contain the risk

premium one applies the last proposition with the factor loadings b̂i(τ), ∀i ∈ {z, v, ω}

that are derived in proposition (2.27). The resulting CS coefficients coincide with the risk

premium component of the model implied population CS coefficients. I call them φ̂n. The

ambiguity premium component within the CS coefficients coincides with the difference

φn − φ̂n. The model therefore allows the decomposition of the population CS coefficients

into its risk premium component φ̂n and into its ambiguity premium component φn − φ̂n.

Figure 5 presents the empirically observed CS coefficients and model implied risk and

ambiguity components. The overall fit to the empirically observed CS coefficients is very

good. The inflation ambiguity premium is the main driver for the CS coefficients for short-

and medium-term bonds. The ambiguity premium explains the non-linear shape of the

empirically observed CS coefficients for short- and medium-term bonds very well. In con-

trast, the CS coefficients for long-term bond are mostly affected by time-varying output

and inflation risk premia.
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5 Literature Overview

This paper is the first paper that incorporates possible inflation misspecification into a

term structure model. Recent empirical models of the term structure find that business

cycle factors and inflation factors describe changes in nominal yields or nominal bond risk

premia (Ang and Piazzesi (2003), Ang, Piazzesi, and Wei (2006), Duffee (2007), among

others). My model extends this line of research by taking into account that investors

do not know the true statistical distribution of future inflation. My model confirms that

nominal yields and nominal bond premia are driven by business cycle and inflation factors.

My estimated structural model argues that changes in inflation expectations and changes

in the inflation ambiguity premium create most of the time-variation that we observe in

the nominal yield curve. I confirm the results of Gürkaynak, Sack, and Swanson (2005)

and Ang, Bekaert, and Wei (2008) who find that it is not the inflation risk premium which

drives most of the time-variation of nominal bond yields.

There is a small but growing literature on model uncertainty and asset pricing.

Early contributions to that research are Gilboa and Schmeidler (1989), Epstein and Wang

(1994), Epstein and Schneider (2003), Anderson, Hansen, and Sargent (2003), Chen and

Epstein (2002), Epstein and Miao (2003). The commonality among this research is that

market prices of risk and market prices of ambiguity are endogenously determined as a

solution of an agent‘s optimization problem. The analog in my paper are proposition 1

and proposition 7. The biggest part of this research focuses on equity pricing and portfolio

allocation.8

8Garlappi, Uppal, and Wang (2007) analyze a portfolio selection problem where an investor accounts

for uncertainty about the estimated expected returns. Uppal and Wang (2003) study an intertemporal

portfolio choice problem where an investor faces an ambiguous return distribution of his stock portfolio.

They find that ambiguity can lead to underdiversified portfolios relative to the mean-variance portfolio.

Liu, Pan, and Wang (2005) introduce ambiguity aversion about the jump probability in the return of
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Recently, some papers focus on ambiguity and the term structure of real bonds.

Kleshchelski and Vincent (2007) study how model uncertainty with regard to the con-

sumption model affects the real term structure. Compared to my model framework this

means that the business cycle innovation W z in equation (2.1) is risky and uncertain at

the same time. My paper takes a different approach. It argues that the investor is not

ambiguity averse with regard to the risky business cycle and inflation shocks, but faces

model uncertainty with regard to a central bank shock W M̂ that is orthogonal to the risky

state variable shocks W v, W z, W ω of the economy. Risk and ambiguity shocks are there-

fore separated in my model. Further, my model uses a nominal framework and addresses

the question of how inflation ambiguity affects inflation expectations, the inflation risk

premium and the inflation ambiguity premium. Gagliardini, Porchia, and Trojani (2008)

construct a real production economy where the representative investor faces model un-

certainty with regard to the variance process of the production technology. The authors

work in a real framework and analyze the impact on real bonds. Compared to my model

framework which introduces model uncertainty with regard to the central bank shock

W M̂ , this means that the stochastic volatility process of the business cycle factor z(t) in

equation (2.2) is risky and uncertain at the same time. Their resulting market price of

uncertainty has the same structure as mine in proposition 1. In contrast to their assump-

tion of a constant upper boundary η(St), I allow the upper boundary to be linear in the

norm of inflation volatility, i.e. (2.37), which intuitively allows the set of inflation priors

stocks and show that his helps to explain the implied volatility smirk of stock options. Sbuelz and

Trojani (2002), Maenhout (2004), Leippold, Trojani, and Vanini (2008) apply ambiguity aversion to the

equity premium puzzle and/or excess volatility puzzle. Dow and Werlang (1992), Trojani and Vanini

(2004) and Cao, Wang, and Zhang (2005) study the impact of ambiguity aversion on the limited stock

market participation. Miao and Wang (2006) study the impact of ambiguity aversion on the optimal

exercise decision. Easley and O’Hara (2008) study the link between ambiguity aversion and stock market

participation.
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to vary with the volatility of inflation. In addition, it follows from equation (2.37) that the

inflation ambiguity premium coincides with the inflation variance premium. Allowing for

inflation ambiguity is a much more reasonable approach for the modeling of the nominal

yield curve given past work who finds that inflation plays the largest role in understanding

nominal bond prices and nominal bond price fluctuations (Gürkaynak, Sack, and Swan-

son (2005), Ang, Bekaert, and Wei (2008), Stock (2001), Cogley and Sargent (2002), and

others).

6 Conclusion

This paper specifies and estimates a three-factor model for the nominal term structure

which accounts for two sources of inflation premia. The first premium is determined by

the product of risk aversion and the covariance between inflation and consumption. The

second premium is determined by the product of model uncertainty aversion and the

volatility of inflation.

The term structure model contains an inflation risk premium and an inflation am-

biguity premium. The inflation ambiguity premium in Treasury bond prices coincides

with the negative covariance of inflation and the market price of inflation ambiguity. I

determine the market price of inflation ambiguity via the solution of an agent’s max-min

problem. The term structure of real bonds, inflation expectations and nominal bonds is

determined in closed-form. When pricing nominal bonds, the ambiguity averse agent pro-

tects himself against unfavorable inflation misspecifications by using a robust inflation

forecast. The difference between the robust inflation forecast and the inflation forecast if

the model was perfectly known determines the inflation ambiguity premium.

I test the model with U.S. data. I show that investors command an inflation ambi-

guity premium. I estimate the model using a data set comprising nominal Government
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bond yields and a panel of inflation, consumption growth and money growth, at a monthly

frequency from 1970 to 2003.

I find that the term structures of the inflation ambiguity premium is upward slop-

ing. The inflation ambiguity premium is negative for short-maturity bonds and positive

for long-maturity bonds. The underlying economic intuition for an upward sloping in-

flation ambiguity premium that is negative for short-maturity bonds and positive for

long-maturity bonds is straight forward. In times of high inflation uncertainty, it is more

difficult to predict the correct inflation model over the next ten years compared to fore-

casting the true inflation model over the next six months. Ambiguity averse investors

therefore prefer to hold short-term bonds instead of long-term bonds, pushing up the

price of short-term bonds and reducing the price of long-term bonds. The corresponding

movements in the nominal yield curve are decreasing short-term yields and increasing

long-term yields. During monetary policy experimentation of the 1979 − 1983, investors

expected high inflation to mean-revert to lower levels and therefore priced nominal bonds

with a lower expected inflation. At the same time, investors charged a steep inflation

ambiguity premium, because they were highly concerned that their inflation model might

not be the correct one.
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Table 1: Parameter Estimates of the Bond Model based on Quasi Maximum
Likelihood Estimation

δ θz γ qa1 ŷ

0.05 0.2571 (0.0212) 0.05 1.0316(< 0.0001) 0.033

κω κv κz µA q1

0.0034 (0.0002) 0.7193 (< 0.0001) 0.0693 (0.0057) 3.0531 (0.0023) 1.015 (< 0.0001)

q2 π̂ ρ ρMv σM

0.7621 (< 0.0001 ) 0.047 0.05 0.6956 (< 0.0001) 0.6776 (< 0.0001)

σω σv σz σA θω

0.1284 (< 0.0001) 0.6840 (< 0.0001) 0.2189 (0.0001) 1.8595 (0.0235) 45.2123 (3.1708)

νA θv qa2 qa3

0.2039 (0.0157) 0.0062 (0.0004) 0.3471 (0.0012) 40.3509 ( 5.9402)

This table presents the Quasi Maximum Likelihood parameter estimates of the structural
model and their standard errors. Estimates without standard errors were fixed prior to
the estimation.

Table 2: In-Sample Mean Pricing Error

Bond Maturity Mean Pricing Error
1 mth 7.5
6 mth 0.8
1 year 2.5
2 year 2.2
5 year 38.0
7 year 32.8

This table presents the mean cross-sectional pricing errors (in-sample) for the estimated
structural model (QML) with ambiguity. The pricing error is given in basis points.
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Table 3: Bond Yield Out-Of-Sample Forecasting

1 Month Ahead Forecast Errors in Basis Points

Mat Full (Relative Ratio) Random Walk (Relative Ratio)
3 20.48 (0.98) 20.76 (1)
36 29.75 (1.01) 29.45 (1)

6 Month Ahead Forecast Errors in Basis Points

Mat Full (Relative Ratio) Random Walk (Relative Ratio)
3 70.87 (0.89) 79.50 (1)
36 78.57 (0.99) 79.33 (1)

12 Month Ahead Forecast Errors in Basis Points

Mat Full (Relative Ratio) Random Walk (Relative Ratio)
3 129.23 (0.92) 139.91 (1)
36 104.99 (0.89) 117.09 (1)

This table presents the RMSE for the out-of-sample forecasting exercise and its ”Ratio”
compared to a random walk forecast. The latter is shown in brackets. It contains one-,
six, and twelve month ahead forecasts of the 3 month and 3 year nominal bond. The
model is estimated from January 1970 to May 1995. The period June 1995 to December
2003 is the out-of-sample forecast period.

Table 4: Nominal Yield Curve - Decomposition

1970 - 2003

Mat yreal EP [π] IRP IAP y$ y$,Data

6 mth 1.05 (0.03) 4.11 (3.54) 1.98 (0.025) -0.61 (1.45) 6.53 6.534
1 year 2.0 1(0.03) 4.21 (3.34) 0.83 (0.029) -0.26 (1.0) 6.79 6.764
2 years 2.47 (0.03) 4.53 (3.34) 0.25 (0.024) -0.17 (0.87) 7.08 7.052
5 years 2.72 (0.02) 4.55 (2.25) -0.1 (0.004) -0.07(0.65) 7.10 7.472
7 years 2.75 (0.19) 4.46 (1.37) -0.16 (<0.002) 0.22 (0.07) 7.267 7.606
10 years 2.77 (0.01) 4.35 (1.21) -0.19 (0.003) 0.79 (1.31) 7.7 7.7

This table presents the components of the nominal yield curve as estimated over the entire
sample January 1970 to December 2003. The corresponding standard deviations are given in
parentheses. The estimation is performed with a panel of smoothed Fama-Bliss yields (1, 3, 6
month and 1, 2, 3, 5, 7, 10 years), CPI inflation, M2 money growth and consumption growth
data. The sample period is January 1970 to December 2003.
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Table 5: Nominal Yield Curve - Variance Decomposition

1970 - 2003

Mat yreal EP [π] IRP IAP
6 mth 0.01% 85.53% <0.01% 14.45%
1 year 0.01% 91.72% 0.01% 8.26%
2 years 0.01% 93.57% 0.01% 6.42%
5 years 0.01% 92.21% <0.01% 7.78%
7 years 0.01% 99.81% <0.01% 0.18%
10 years 0.01% 45.9% <0.01% 54.09%

This table presents the variance decomposition for components of the nominal yield curve.

40



Figure 1: Bond Yield Factor Loadings, 1970.1 - 2003.12

This figure presents the factor loadings of the structural model. The estimation is per-
formed with a panel of smoothed Fama-Bliss yields (1, 3, 6 month and 1, 2, 3, 5, 7, 10
years), CPI inflation, M2 money growth and consumption growth data. The sample period
is January 1970 to December 2003.
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Figure 2: Components of Nominal Yields during the Monetary Policy Experi-
mentation 1979 − 1983 and during the Great Moderation 1984 − 2003

This figure presents the term structure of the components of the nominal yield curve.
The components are real yields, expected inflation, inflation risk premium and inflation
ambiguity premium. The left panel presents the components for the time period of the
monetary policy experimentation 1979 − 1983. The right panel presents the components
for the time period of the great moderation 1984 − 2003. The estimation is performed
with a panel of smoothed Fama-Bliss yields (1, 3, 6 month and 1, 2, 3, 5, 7, 10 years),
CPI inflation, M2 money growth and consumption growth data. The estimation period is
January 1970 to December 2003.
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Figure 3: Time Series of Inflation Ambiguity Premium and Inflation Risk Pre-
mium, 1970.1 - 2003.12

This figure presents the model implied annualized inflation ambiguity premium and infla-
tion risk premium. The left panel shows the premia for the six month nominal yield, the
panel in the middle shows the premia for the two year nominal yield and the panel on the
right shows the premia for the ten year nominal yield. The estimation is performed with
a panel of smoothed Fama-Bliss yields (1, 3, 6 month and 1, 2, 3, 5, 7, 10 years), CPI
inflation, M2 money growth and consumption growth data. The sample period is January
1970 to December 2003. The black line presents the overall term premium.
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Figure 4: Variance of Inflation and Inflation Ambiguity Premium

This figure contrasts the estimated inflation ambiguity premium with the model implied
monthly variance of inflation (annualized).
The estimation is performed with a panel of smoothed Fama-Bliss yields (1, 3, 6 month
and 1, 2, 3, 5, 7, 10 years), CPI inflation, M2 money growth and consumption growth
data. The sample period is January 1970 to December 2003.
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Figure 5: Campbell-Shiller Coefficients, 1970.I - 2003.IV

This figure decomposes the model implied population Campbell-Shiller (CS) coefficients
into its risk and ambiguity premium. The estimation is performed with a panel of
smoothed Fama-Bliss yields (1, 3, 6 month and 1, 2, 3, 5, 7, 10 years), CPI inflation,
M2 money growth and consumption growth data. The sample period is January 1970 to
December 2003.
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